Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
FASEB J ; 38(4): e23479, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345813

RESUMO

Accumulating evidence shows that renal fibrosis plays a key role in the development of hypertensive nephropathy (HTN). Therefore, a better understanding of the underlying mechanism of renal fibrosis regulation in HTN would be critical for designing rational strategies for therapeutic interventions. In this study, we revealed that GPR97, a novel identified adhesion G coupled receptor, plays an important role in the regulation of Wnt/ß-catenin signaling, which is the crucial driver of renal fibrosis in HTN. First, we identified that the expression of GPR97 correlated with the ß-catenin expression in renal biopsy from patients with HTN. Moreover, we found that GPR97 deficiency inhibited Wnt/ß-catenin signaling in mice with HTN, as evidenced by the reduction of ß-catenin expression and downstream target proteins, including MMP7 and Fibronectin. Mechanistically, we found that GPR97 could directly bind with Wnt1 in cultured tubular cells and TGF-ß1 treatment enhanced the binding ability of GPR97 and Wnt1. In addition, the gene silencing of GPR97 could decrease the Wnt1-induced fibrotic phenotype of tubular cells and inflammatory responses, suggesting that the binding of GPR97 and Wnt1 promoted Wnt/ß-catenin signaling. Collectively, our studies reveal that GPR97 is a regulator of Wnt/ß-catenin signaling in HTN, and targeting GPR97 may be a novel therapeutic strategy for HTN treatment.


Assuntos
Hipertensão Renal , Nefrite , Receptores Acoplados a Proteínas G , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose , Via de Sinalização Wnt/fisiologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética
2.
Acta Pharmacol Sin ; 45(5): 1019-1031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228909

RESUMO

Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos Endogâmicos C57BL , Podócitos , Animais , Podócitos/metabolismo , Podócitos/patologia , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos , Masculino , Diabetes Mellitus Experimental/metabolismo , Camundongos Knockout , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
Mol Ther ; 31(10): 3034-3051, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37452495

RESUMO

Oxidative stress plays a central role in the pathophysiology of acute kidney injury (AKI). Although RNA is one of the most vulnerable cell components to oxidative damage, it is unclear whether RNA oxidation is involved in the pathogenesis of AKI. In this study, we found that the level of RNA oxidation was significantly enhanced in kidneys of patients with acute tubular necrosis (ATN) and in the renal tubular epithelial cells (TECs) of mice with AKI, and oxidized RNA overload resulted in TEC injury. We further identified interferon-stimulated gene 20 (ISG20) as a novel regulator of RNA oxidation in AKI. Tubule-specific deficiency of ISG20 significantly aggravated renal injury and RNA oxidation in the ischemia/reperfusion-induced AKI mouse model and ISG20 restricted RNA oxidation in an exoribonuclease activity-dependent manner. Importantly, overexpression of ISG20 protected against oxidized RNA overproduction and renal ischemia/reperfusion injury in mice and ameliorated subsequent protein aggresome accumulation, endoplasmic reticulum stress, and unfolded protein response. Thus, our findings provide direct evidence that RNA oxidation contributes to the pathogenesis of AKI and that ISG20 importantly participates in the degradation of oxidized RNA, suggesting that targeting ISG20-handled RNA oxidation may be an innovative therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Apoptose , Exorribonucleases/genética , Exorribonucleases/metabolismo , Interferons/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , RNA/metabolismo
4.
Acta Pharmacol Sin ; 44(6): 1206-1216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36635422

RESUMO

Hypertensive nephropathy (HTN) ranks as the second-leading cause of end-stage renal disease (ESRD). Accumulating evidence suggests that persistent hypertension injures tubular cells, leading to tubulointerstitial fibrosis (TIF), which is involved in the pathogenesis of HTN. G protein-coupled receptors (GPCRs) are implicated in many important pathological and physiological processes and act as important drug targets. In this study, we explored the intrarenal mechanisms underlying hypertension-associated TIF, and particularly, the potential role of GPR97, a member of the adhesion GPCR subfamily, in TIF. A deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mouse model was used. We revealed a significantly upregulated expression of GPR97 in the kidneys, especially in renal tubules, of the hypertensive mice and 10 patients with biopsy-proven hypertensive kidney injury. GPR97-/- mice showed markedly elevated blood pressure, which was comparable to that of wild-type mice following DOCA/salt treatment, but dramatically ameliorated renal injury and TIF. In NRK-52E cells, we demonstrated that knockdown of GPR97 suppressed the activation of TGF-ß signaling by disturbing small GTPase RhoA-mediated cytoskeletal reorganization, thus inhibiting clathrin-mediated endocytosis of TGF-ß receptors and subsequent Smad activation. Collectively, this study demonstrates that GPR97 contributes to hypertension-associated TIF at least in part by facilitating TGF-ß signaling, suggesting that GPR97 is a pivotal intrarenal factor for TIF progression under hypertensive conditions, and therapeutic strategies targeting GPR97 may improve the outcomes of patients with HTN.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão Renal , Hipertensão , Camundongos , Animais , Acetato de Desoxicorticosterona/efeitos adversos , Rim/patologia , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Hipertensão/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Fibrose
5.
Mol Ther ; 30(8): 2746-2759, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35514086

RESUMO

Although tissue-resident-memory T (TRM) cells, a recently identified non-circulating memory T cell population, play a crucial role in mediating local immune responses and protect against pathogens upon local reinfection, the composition, effector function, and specificity of TRM cells in the kidney and their relevance for chronic kidney disease remain unknown. In this study, we found that renal tissue displayed high abundance of tissue-resident lymphocytes, and the proportion of CD8+ TRM cells was significantly increased in the kidney from patients and mice with focal segmental glomerulosclerosis (FSGS), diabetic kidney disease (DKD), and lupus nephritis (LN). Mechanistically, IL-15 significantly promoted CD8+ TRM cell formation and activation, thereby promoting podocyte injury and glomerulosclerosis. Interestingly, Sparsentan, the dual angiotensin II (Ang II) receptor and endothelin type A receptor antagonist, can also reduce TRM cell responses by intervening IL-15 signaling, exploring its new pharmacological functions. Mechanistically, Sparsentan inhibited Ang II or endothelin-1 (ET-1)-mediated IL-15 signaling, thereby further regulating renal CD8+ TRM cell fates. Collectively, our studies provide direct evidence for the pivotal role of renal CD8+ TRM cells in podocyte injury and further strengthen that targeting TRM cells represents a novel therapeutic strategy for patients with glomerular diseases.


Assuntos
Memória Imunológica , Podócitos , Animais , Linfócitos T CD8-Positivos , Interleucina-15 , Camundongos , Transdução de Sinais
6.
Kidney Int ; 102(3): 546-559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623505

RESUMO

Podocytes are unique, highly specialized, terminally differentiated cells, which are restricted in a post-mitotic state with limited ability to repair or regenerate. Re-entering the mitotic phase causes podocyte mitotic catastrophe, thereby leading to podocyte death and glomerular injury. Myeloid-derived growth factor (MYDGF) is a novel secreted protein and plays an important role in the regulation of cardiovascular function. However, whether MYDGF is expressed in kidney parenchymal cells and whether it has biological functions in the kidney remain unknown. Here, we found that MYDGF was expressed in kidney parenchymal cells and was significantly reduced in podocytes from mice with models of focal segmental glomerulosclerosis and diabetic kidney disease. Podocyte-specific deletion of Mydgf in mice exacerbated podocyte injury and proteinuria in both disease models. Functionally, MYDGF protected podocytes against mitotic catastrophe by reducing accumulation of podocytes in the S phase, a portion of the cell cycle in which DNA is replicated. Mechanistically, MYDGF regulates the expression of the transcription factor RUNX2 which mediates some MYDGF effects. Importantly, a significant reduction of MYDGF was found in glomeruli from patients with glomerular disease due to focal segmental glomerulosclerosis and diabetic kidney disease and the level of MYDGF was correlated with glomerular filtration rate, serum creatinine and podocyte loss. Thus, our studies indicate that MYDGF may be an attractive therapeutic target for glomerular disease.


Assuntos
Nefropatias Diabéticas , Glomerulosclerose Segmentar e Focal , Interleucinas , Podócitos , Animais , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Interleucinas/genética , Glomérulos Renais/patologia , Camundongos , Mitose , Podócitos/patologia
7.
Circ Res ; 124(10): 1448-1461, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894089

RESUMO

RATIONALE: Endothelial dysfunction is an important determinant risk factor for the development of hypertension and its complications. Thus, identification of potential therapeutic targets for preventing endothelial dysfunction has major clinical importance. Emerging evidence indicates that epigenetic modifications are closely associated with the regulation of endothelial function. Among them, HDAC (histone deacetylase)-mediated epigenetic processes in vascular homeostasis and cardiovascular disease have attracted much attention. SIRT6 (sirtuin 6) is one member of SIRTs (class III HDAC) that are highly conserved NAD+-dependent deacetylases. OBJECTIVE: This study was designed to elucidate the role of SIRT6 in the pathogenesis of hypertension, discover the new targets of SIRT6, and explore related mechanisms on the regulation of endothelial function. METHODS AND RESULTS: The levels of endothelial SIRT6 were significantly reduced in 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Utilizing genetically engineered endothelial-specific SIRT6 knockout (Cre+/SIRT6fl/fl) mice, we found that endothelial-specific deletion of SIRT6 significantly enhanced blood pressure, exacerbated endothelial dysfunction and cardiorenal injury in experimental hypertension. Functionally, SIRT6 has pleiotropic protective actions in endothelial cells, which include promoting endothelium-dependent vasodilatation and vascular NO bioavailability, reducing cellular permeability, ameliorating endothelial senescence and apoptosis, and facilitating autophagy. Mechanistically, SIRT6 induced the expression of GATA5 (GATA-binding protein 5), a novel regulator of blood pressure, through inhibiting Nkx3.2 (NK3 homeobox 2) transcription by deacetylating histone H3K9 (histone H3 lysine 9), thereby regulating GATA5-mediated signaling pathways to prevent endothelial injury. Finally, we provide direct evidence for the therapeutic potential of SIRT6 in desoxycorticosterone acetate/salt-induced hypertensive mice by overexpression of SIRT6 in vivo. CONCLUSIONS: This study for the first time demonstrates that SIRT6 prevents hypertension and its complications by maintaining endothelial function. Pharmacological targeting of SIRT6 may be an innovative therapeutic strategy for treating patients with hypertension.


Assuntos
Endotélio Vascular/fisiologia , Hipertensão/prevenção & controle , Sirtuínas/fisiologia , Acetilação , Angiotensina II , Animais , Acetato de Desoxicorticosterona , Endotélio Vascular/lesões , Epigênese Genética , Fator de Transcrição GATA5/metabolismo , Histona Desacetilases , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipertensão/induzido quimicamente , Hipertensão Renal/metabolismo , Rim/lesões , Camundongos , Camundongos Knockout , Nefrite/metabolismo , Sirtuínas/sangue , Sirtuínas/deficiência , Sirtuínas/genética , Cloreto de Sódio , Fatores de Transcrição/metabolismo , Vasoconstritores , Vasodilatação
8.
Exp Cell Res ; 358(2): 171-181, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633902

RESUMO

Hyperhomocysteinemia (HHcy, high homocysteine) induces the injury of endothelial cells (ECs). Hydrogen sulfide (H2S) protects ECs and inhibits the activation of platelets. Calcium-sensing receptor (CaSR) regulates the production of endogenous H2S. However, whether CaSR inhibits the injury of ECs and the activation of platelets by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H2S)/H2S pathway in hyperhomocysteinemia has not been previously investigated. Here, we tested the ultrastructure alterations of ECs and platelets, the changes in the concentration of serum homocysteine and the parameters of blood of hyperhomocysteinemia rats were measured. The aggregation rate and expression of P-selectin of platelets were assessed. Additionally, the expression levels of CaSR and CSE in the aorta of rats were examined by western blotting. The mitochondrial membrane potential and the production of reactive oxygen species (ROS) were measured; the expression of phospho-calmodulin kinases II (p-CaMK II) and Von Willebrand Factor (vWF) of cultured ECs from rat thoracic aortas were measured. We found that the aggregation rate and the expression of P-selectin of platelets increased, and the expression of CaSR and CSE decreased in HHcy rats. In the ECs of HHcy group, the ROS production increased and the mitochondrial membrane potential decreased markedly, the expression of CSE and the p-CaMK II increased after treatment with CaSR agonist while decreased upon administration of U73122 (PLC-specific inhibitor) and 2-APB (IP3 Receptor inhibitor). CaSR agonist or NaHS significantly reversed the ECs injured and platelet aggregation caused by hyperhomocysteinemia. Our results demonstrate that CaSR regulates the endogenous CSE/H2S pathway to inhibit the activation of platelets which concerts the protection of ECs in hyperhomocysteinemia.


Assuntos
Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Ativação Plaquetária , Receptores de Detecção de Cálcio/metabolismo , Animais , Células Cultivadas , Masculino , Ativação Plaquetária/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia
9.
J Cell Mol Med ; 21(12): 3190-3203, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28608965

RESUMO

Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H2 S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 µM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 µM NaHS was used as an exogenous H2 S donor. Firstly, we demonstrated that high glucose and palmitate decreased H2 S production and CSE expression in RAECs. Then, the antioxidative effect of H2 S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H2 S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H2 S decreased mitochondrial fragments and significantly reduced the expression of p-Drp-1/Drp-1 and Fis1 compared to high-glucose and high-palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H2 S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H2 S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H2 S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H2 S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication.


Assuntos
Glucose/antagonistas & inibidores , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Ácido Palmítico/antagonistas & inibidores , Sulfetos/farmacologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases , Regulação da Expressão Gênica , Glucose/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Ácido Palmítico/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfetos/química , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Am J Physiol Endocrinol Metab ; 312(3): E190-E203, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998959

RESUMO

The upregulation of reactive oxygen species (ROS) is a primary cause of cardiomyocyte apoptosis in diabetes cardiomyopathy (DCM). Mitofusin-2 (Mfn-2) is a key protein that bridges the mitochondria and endoplasmic reticulum (ER). Hydrogen sulfide (H2S)-mediated cardioprotection is related to antioxidant effects. The present study demonstrated that H2S inhibited the interaction between the ER and mitochondrial apoptotic pathway. This study investigated cardiac function, ultrastructural changes in the ER and mitochondria, apoptotic rate using TUNEL, and the expression of ER stress-associated proteins and mitochondrial apoptotic proteins in cardiac tissues in STZ-induced type I diabetic rats treated with or without NaHS (donor of H2S). Mitochondria of cardiac tissues were isolated, and MPTP opening and cytochrome c (cyt C) and Mfn-2 expression were also detected. Our data showed that hyperglycemia decreased the cardiac function by ultrasound cardiogram, and the administration of exogenous H2S ameliorated these changes. We demonstrated that the expression of ER stress sensors and apoptotic rates were elevated in cardiac tissue of DCM and cultured H9C2 cells, but the expression of these proteins was reduced following exogenous H2S treatment. The expression of mitochondrial apoptotic proteins, cyt C, and mPTP opening was decreased following treatment with exogenous H2S. In our experiment, the expression and immunofluorescence of Mfn-2 were both decreased after transfection with Mfn-2-siRNA. Hyperglycemia stimulated ER interactions and mitochondrial apoptotic pathways, which were inhibited by exogenous H2S treatment through the regulation of Mfn-2 expression.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Citocromos c/efeitos dos fármacos , Citocromos c/metabolismo , Cardiomiopatias Diabéticas , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imunofluorescência , GTP Fosfo-Hidrolases , Coração/efeitos dos fármacos , Coração/fisiopatologia , Marcação In Situ das Extremidades Cortadas , Masculino , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Sulfetos/farmacologia
11.
Cell Physiol Biochem ; 43(3): 1168-1187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28977784

RESUMO

BACKGROUND/AIM: Autophagy plays an important role in cellular homeostasis through the disposal and recycling of cellular components. Hydrogen sulphide (H2S) is the third endogenous gas that has been shown to confer cardiac protective effects. Given the regulation of autophagy in cardioprotection, this study aimed to investigate the protective effects of H2S via autophagy during high glucose treatment. METHODS: This study investigated the content of H2S in the plasma as well as myocardial, ultrastructural changes in mitochondria and autophagosomes. This study also investigated the apoptotic rate using Hoechst/PI as well as expression of autophagy-associated proteins and mitochondrial apoptotic proteins in H9C2 cells treated with or without GYY4137. Mitochondria of cardiac tissues were isolated and RCR and ADP/O were also detected. AMPK knockdown was performed with siRNA transfection. RESULTS: In a STZ-induced diabetic model, NaHS treatment not only increased the expression of p-AMPK in diabetic group but further activated cell autophagy. Following 48h high glucose, autophagosomes and cell viability were reduced. The present results showed that autophagy could be induced by H2S, which was verified by autophagic ultrastructural observation and LC3-I/LC3-II conversion. In addition, the mitochondrial membrane potential (MMP) was significantly decreased. The expressions levels of autophagic-related proteins were significantly elevated. Moreover, H2S activated the AMPK/rapamycin (mTOR) signalling pathway. CONCLUSIONS: Our findings demonstrated that H2S decreases oxidative stress and protects against mitochondria injury, activates autophagy, and eventually leads to cardiac protection via the AMPK/mTOR pathway.


Assuntos
Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Glucose/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Estreptozocina/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular/efeitos dos fármacos
12.
Exp Cell Res ; 347(1): 184-191, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27502588

RESUMO

Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H2S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H2S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H2S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H2S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca(2+)]i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H2S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21(Cip/WAK-1) and Calponin decreased. The CaSR agonist or exogenous H2S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H2S is related to the PLC-IP3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine.


Assuntos
Homocisteína/farmacologia , Sulfeto de Hidrogênio/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Adolescente , Animais , Bromodesoxiuridina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cistationina gama-Liase/metabolismo , Humanos , Indóis/farmacologia , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Naftalenos/farmacologia , Fenótipo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
13.
Cell Physiol Biochem ; 36(3): 917-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088607

RESUMO

BACKGROUND: Oxidative stress inducing hyperglycemia and high glucose play an important role in the development of cardiac fibrosis associated with diabetic cardiomyopathy. The endogenous gasotransmitter hydrogen sulfide (H2S) can act in a cytoprotective manner. However, whether H2S could inhibit the fibrotic process is unclear. The purpose of our study was to examine the role of H2S in the development and underlying mechanisms behind diabetic cardiomyopathy. METHODS: Diabetic cardiomyopathy was induced in rats by injection of streptozotocin (STZ). Cardiac fibrosis and proliferation of rat neonatal cardiac fibroblasts were induced by hyperglycemia and high glucose. We tested the effects of GYY4137 (a slow-releasing H2S donor), NaHS (an exogenous H2S donor) and NADPH oxidase 4 (NOX4) siRNA on reactive oxygen species (ROS) production, MMP-2,9, cystathionine-γ-lyase (CSE), NOX4, and extracellular signal-regulated kinase 1/2 (ERK1/2) to reveal the effects of H2S on the cardiac fibrosis of diabetic cardiomyopathy. RESULT: In vivo, NaHS treatment inhibited hyperglycemia-induced expression of type I and III collagen, MMP-2 and MMP-9 in diabetic hearts. Rat neonatal cardiac fibroblast migration and cell survival were inhibited by administration of GYY4137. NOX4 expression was increased by hyperglycemia and high glucose, but was reduced in cardiac fibroblasts treated by NaHS and GYY4137. ROS production, ERK1/2 phosphorylation and MMP-2 and 9 expression were decreased in rat neonatal cardiac fibroblasts treated with GYY4137 and NOX4 siRNA. CONCLUSION: The present study shows that enhanced NOX4 expression results in cardiac fibrosis through ROS-ERK1/2-MAPkinase-dependent mechanisms in diabetic cardiomyopathy. NOX4 could be an important target for H2S to regulate redox homeostasis in cardiac fibrosis of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , Hiperglicemia/tratamento farmacológico , NADPH Oxidases/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/farmacologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Hiperglicemia/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Compostos Organotiofosforados/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estreptozocina , Sulfetos/farmacologia
14.
Cell Physiol Biochem ; 35(1): 38-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25547907

RESUMO

BACKGROUND: Diabetic encephalopathy is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations ([Ca(2+)]i) at its onset. The calcium sensing receptor (CaSR) is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic encephalopathy remains unclear. METHODS: In this study, diabetic rats were modeled by STZ (50 mg/kg). At the end of 4, 8 and 12 weeks, the CaSR expression in hippocampus was analyzed by Western blot. In neonatal rat hippocampal neurons, the [Ca(2+)]i was detected by laser scanning confocal microscopy, the production of reactive oxygen species (ROS) in mitochondria, the level of NO and the mitochondrial transmembrane potential were measured by MitoSOX, DAF-FM and JC-1, respectively. RESULTS: Our results showed in hippocampal neurons treated with high glucose, CaSR regulated [Ca(2+)]i through the PLC-IP3 pathway. CaSR expression was decreased and was involved in the changes in [Ca(2+)]i. Mitochondrial membrane potential, NO release and expression of p-eNOS decreased, while the production of ROS in mitochondria increased. CONCLUSION: Down-regulation of CaSR expression was accompanied by neuronal injury, calcium disturbance, increased ROS production and decreased release of NO. Up-regulation of CaSR expression attenuated these changes through a positive compensatory protective mechanism to inhibit and delay diabetic encephalopathy in rats.


Assuntos
Diabetes Mellitus Experimental/patologia , Neurônios/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo/efeitos dos fármacos , Glucose/farmacologia , Hipocampo/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuritos/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/toxicidade
15.
Cell Physiol Biochem ; 35(4): 1582-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25824457

RESUMO

AIMS: Hydrogen sulfide (H2S) inhibits the proliferation of vascular smooth muscle cells (VSMCs). However, how cystathionine-gamma-lyase (CSE), a major enzyme that produces H2S, is regulated remains unknown. Whether calcium-sensing receptor (CaSR) inhibits the proliferation of VSMCs by regulating the endogenous CSE/H2S pathway in diabetic rat has not been previously investigated. METHODS AND RESULTS: The morphological and ultrastructure alterations were tested by transmission electron microscopy, changes in the H2S concentration and the relaxation of the mesenteric secondary artery loop of diabetic rats were determined by Multiskan spectrum microplate spectrophotometer and isometric force transducer. Additionally, the expression levels of CaSR, CSE and Cyclin D1 in the mesenteric arteries of rats were examined by western blotting. The intracellular calcium concentration, the expression of p-CaMK II (phospho-calmodulin kinases II), CSE activity, the concentration of endogenous H2S and the proliferation of cultured VSMCs from rat thoracic aortas were measured by using confocal microscope, western blotting, microplate spectrophotometer, MTT and BrdU, respectively. The VSMC layer thickened, the H2S concentration dropped, the relaxation of the mesenteric secondary artery rings weakened, and the expression of CaSR and CSE decreased whereas the expression of Cyclin D1 increased in diabetic rats compared with the control group. The [Ca(2+)]i of VSMCs increased upon treatment with CaSR agonists (10 µM Calindol and 2.5 mM CaCl2), while it decreased upon administration of calhex231, U73122 and 2-APB. The expression of p-CaMK II and CSE increased upon treatment with CaSR agonists in VSMCs. CSE activity and the endogenous H2S concentration decreased in response to high glucose, while it increased with treatment of CaSR agonists. The proliferation rate increased in response to high glucose, and CaSR agonists or NaHS significantly reversed the proliferation of VSMCs caused by high glucose. CONCLUSIONS: Our results demonstrated that CaSR regulated the endogenous CSE/H2S pathway to inhibit the proliferation of VSMCs in both diabetic and high glucose models.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cistationina gama-Liase/metabolismo , Diabetes Mellitus Experimental/patologia , Sulfeto de Hidrogênio/toxicidade , Receptores de Detecção de Cálcio/metabolismo , Animais , Aorta Torácica/citologia , Benzamidas/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Cicloexilaminas/farmacologia , Cistationina gama-Liase/genética , Diabetes Mellitus Experimental/metabolismo , Estrenos/farmacologia , Glucose/farmacologia , Indóis/farmacologia , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Naftalenos/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/genética
16.
Mol Cell Biochem ; 399(1-2): 189-200, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376739

RESUMO

Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 µmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.


Assuntos
Cardiotônicos/farmacologia , Hiper-Homocisteinemia/tratamento farmacológico , Mitocôndrias Cardíacas/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Apoptose , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Cardiopatias/prevenção & controle , Hiper-Homocisteinemia/complicações , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
17.
Cell Physiol Biochem ; 33(3): 557-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603056

RESUMO

AIMS: Calcium-sensing receptor (CaR) acts as a G protein coupled receptor that mediates the increase of the intracellular Ca(2+) concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM) secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO). METHODS AND RESULTS: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca(2+)]i). Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9). Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. CONCLUSIONS: Our results are the first report that CaR plays an important role in Ca(2+) signaling involved in cardiac fibrosis through the phospholipase C- inositol 3,4,5 phosphate (PLC-IP3) pathway.


Assuntos
Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miocárdio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fibroblastos/patologia , Isoproterenol/efeitos adversos , Isoproterenol/farmacologia , Miocárdio/patologia , Ratos , Ratos Wistar
18.
Cell Physiol Biochem ; 33(6): 1789-801, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24923653

RESUMO

BACKGROUND: In advanced atherosclerosis, chronic endoplasmic reticulum (ER) stress induces foam cells apoptosis and generates inflammatory reactions. METHODS: THP-1 macrophage-derived foam cells (FC) were incubated with 1 mM 5-aminolevulinic acid (ALA). After ALA mediated sonodynamic therapy (ALA-SDT), apoptosis of FC was assayed by Annexin V-PI staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were detected by staining with CellROX® Green Reagent and jc-1. Pretreatment of FC with N-acetylcysteine (NAC), Z-VAD-FMK or 4-phenylbutyrate (4-PBA), mitochondria apoptotic pathway associated proteins and C/EBP-homologous (CHOP) expressions were assayed by wertern blotting. RESULTS: Burst of apoptosis of FC was observed at 5-hour after ALA-SDT with 6-hour incubation of ALA and 0.4 W/cm(2) ultrasound. After ALA-SDT, intracellular ROS level increased and mitochondrial membrane potential collapsed. Translocations of cytochrome c from mitochondria into cytosol and Bax from cytosol into mitochondria, cleaved caspase 9, cleaved caspase 3, upregulation of CHOP, as well as downregulation of Bcl-2 after ALA-SDT were detected, which could be suppressed by NAC. Activation of mitochondria-caspase pathway could not be inhibited by 4-PBA. Cleaved caspase 9 and caspase 3 as well as apoptosis induced by ALA-SDT could be inhibited by Z-VAD-FMK. CONCLUSION: The mitochondria-caspase pathway is predominant in the apoptosis of FC induced by ALA-SDT though ER stress participates in.


Assuntos
Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Células Espumosas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Espumosas/metabolismo , Humanos , Immunoblotting , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sonicação/instrumentação , Terapia por Ultrassom/instrumentação , Proteína X Associada a bcl-2/metabolismo
19.
Front Pharmacol ; 15: 1329307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318141

RESUMO

With the increasing prevalence of multidrug-resistant Gram-negative bacterial pathogens worldwide, antimicrobial resistance has become a significant public health concern. Ceftazidime-avibactam (CAZ-AVI) exhibited excellent in vitro activity against many carbapenemase-producing pathogens, and was widely used for the treatment of various complicated infections. CAZ-AVI is well tolerated across all dosing regimens, and its associated acute kidney injury (AKI) in phase II/III clinical trials is rare. However, recent real-world studies have demonstrated that CAZ-AVI associated AKI was more frequent in real-world than in phase II and III clinical trials, particularly in patients receiving concomitant nephrotoxic agents, with critically ill patients being at a higher risk. Herein, we reviewed the safety data related to renal impairment of CAZ-AVI, and discussed its pharmacokinetic/pharmacodynamic targets and dosage adjustment in patients with impaired renal function. This review aimed to emphasize the importance for healthcare professionals to be aware of this adverse event of CAZ-AVI and provide practical insights into the dosage optimization in critically ill patients with renal dysfunction.

20.
J Ethnopharmacol ; 326: 117958, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395179

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nao-Ling-Su Capsule (NLSC) is a traditional prescription, which is composed of fifteen herbs such as epimedium, Polygala tenuifolia, and Schisandra chinensis. It has the effect of strengthening the brain, calming nerves, and protecting the kidney, which has been used clinically for many years to strengthen the brain and kidney. However, the effect of NLSC in the treatment of acute kidney injury (AKI) is still unclear. AIM OF THE STUDY: The present study aims to elucidate the pharmacological actions of NLSC in the treatment of AKI. MATERIALS AND METHODS: Molecular targets for NLSC and AKI were obtained from various databases, and then we built networks of interactions between proteins (PPI) by employing string databases. Additionally, we employed the DAVID database to conduct gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was conducted to analyze the interaction between core components and their corresponding core targets. Next, the C57BL male mice model of ischemia/reperfusion damage (IRI) was developed, and the nephridial protective effect of NLSC was evaluated. The accuracy of the expected targets was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR). The renal protective effect of NLSC was assessed using an immortalized human kidney tubular (HK-2) cell culture produced by oxygen-glucose deprivation (OGD). RESULTS: Network pharmacology analysis identified 199 common targets from NLSC and AKI. STAT3, HSP90AA1, TP53, MAPK3, JUN, JAK2, and VEGFA could serve as potential drug targets and were associated with JAK2/STAT3 signaling pathway, PI3K-Akt signaling pathway, etc. The molecular docking analysis confirmed significant docking activity between the main bioactive components and core targets, including STAT3 and KIM-1. Moreover, the AKI mice model was successfully established and NLSC pretreatment could improve renal function and alleviate renal damage. NLSC could alleviate renal inflammation and tubular cell apoptosis, and decrease the expression of STAT3 and KIM-1 in AKI mice. In vitro, both NLSC and drug-containing serum may protect HK-2 cells by inhibiting STAT3 signaling, especially STAT3-mediated apoptosis and KIM-1 expression. CONCLUSION: NLSC could alleviate renal inflammation and apoptosis, exerting its beneficial effects by targeting the STAT3/KIM-1 pathway. NLSC is a promising candidate for AKI treatment and provides a new idea and method for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Medicamentos de Ervas Chinesas , Nefrite , Traumatismo por Reperfusão , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Rim , Injúria Renal Aguda/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Reperfusão , Inflamação , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA