Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750273

RESUMO

What determines the rate at which a multicellular organism matures is a fundamental question in biology. In plants, the decline of miR156 with age serves as an intrinsic, evolutionarily conserved timer for the juvenile-to-adult phase transition. However, the way in which age regulates miR156 abundance is poorly understood. Here, we show that the rate of decline in miR156 is correlated with developmental age rather than chronological age. Mechanistically, we found that cell division in the apical meristem is a trigger for miR156 decline. The transcriptional activity of MIR156 genes is gradually attenuated by the deposition of the repressive histone mark H3K27me3 along with cell division. Our findings thus provide a plausible explanation of why the maturation program of a multicellular organism is unidirectional and irreversible under normal growth conditions and suggest that cell quiescence is the fountain of youth in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Divisão Celular/genética , Meristema/genética , MicroRNAs/genética , Brotos de Planta/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
2.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842098

RESUMO

Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Análise Espaço-Temporal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
3.
Dev Cell ; 57(4): 526-542.e7, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35063083

RESUMO

Shoot regeneration is mediated by the sequential action of two phytohormones, auxin and cytokinin. However, the chromatin regulatory landscapes underlying this dynamic response have not yet been studied. In this study, we jointly profiled chromatin accessibility, histone modifications, and transcriptomes to demonstrate that a high auxin/cytokinin ratio environment primes Arabidopsis shoot regeneration by increasing the accessibility of the gene loci associated with pluripotency and shoot fate determination. Cytokinin signaling not only triggers the commitment of the shoot progenitor at later stages but also allows chromatin to maintain shoot identity genes at the priming stage. Our analysis of transcriptional regulatory dynamics further identifies a catalog of regeneration cis-elements dedicated to cell fate transitions and uncovers important roles of BES1, MYC, IDD, and PIF transcription factors in shoot regeneration. Our results, thus, provide a comprehensive resource for studying cell reprogramming in plants and provide potential targets for improving future shoot regeneration efficiency.


Assuntos
Cromatina/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regeneração/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia
4.
Nat Plants ; 8(3): 257-268, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35318444

RESUMO

Multicellular organisms undergo several developmental transitions during their life cycles. In contrast to animals, the plant germline is derived from adult somatic cells. As such, the juvenility of a plant must be reset in each generation. Previous studies have demonstrated that the decline in the levels of miR156/7 with age drives plant maturation. Here we show that the resetting of plant juvenility during each generation is mediated by de novo activation of MIR156/7 in Arabidopsis. Blocking this process leads to a shortened juvenile phase and premature flowering in the offspring. In particular, an Arabidopsis plant devoid of miR156/7 flowers even without formation of rosette leaves in long days. Mechanistically, we find that different MIR156/7 genes are reset at different developmental stages through distinct reprogramming routes. Among these genes, MIR156A, B and C are activated de novo during sexual reproduction and embryogenesis, while MIR157A and C are reset upon seed germination. This redundancy generates a robust reset mechanism that ensures accurate restoration of the juvenile phase in each plant generation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética
5.
STAR Protoc ; 2(1): 100289, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33532736

RESUMO

Open or accessible regions of the genome are the primary positions of binding sites for transcription factors and chromatin regulators. Transposase-accessible chromatin sequencing (ATAC-seq) can probe chromatin accessibility in the intact nucleus. Here, we describe a protocol to generate ATAC-seq libraries from fresh Arabidopsis thaliana tissues and establish an easy-to-use bioinformatic analysis pipeline. Our method could be applied to other plants and other tissues and allows for the reliable detection of changes in chromatin accessibility throughout plant growth and development. For complete details on the use and execution of this protocol, please refer to Wang et al. (2020).


Assuntos
Arabidopsis/genética , Cromatina/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Transposases , Cromatina/metabolismo
6.
Dev Cell ; 54(6): 742-757.e8, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32755547

RESUMO

Plant somatic embryogenesis refers to a phenomenon where embryos develop from somatic cells in the absence of fertilization. Previous studies have revealed that the phytohormone auxin plays a crucial role in somatic embryogenesis by inducing a cell totipotent state, although its underlying mechanism is poorly understood. Here, we show that auxin rapidly rewires the cell totipotency network by altering chromatin accessibility. The analysis of chromatin accessibility dynamics further reveals a hierarchical gene regulatory network underlying somatic embryogenesis. Particularly, we find that the embryonic nature of explants is a prerequisite for somatic cell reprogramming. Upon cell reprogramming, the B3-type totipotent transcription factor LEC2 promotes somatic embryo formation by direct activation of the early embryonic patterning genes WOX2 and WOX3. Our results thus shed light on the molecular mechanism by which auxin promotes the acquisition of plant cell totipotency and establish a direct link between cell totipotent genes and the embryonic development pathway.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Proteínas de Arabidopsis/metabolismo , Reprogramação Celular/fisiologia , Cromatina/genética , Ácidos Indolacéticos/metabolismo , Técnicas de Embriogênese Somática de Plantas , Sementes , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA