RESUMO
Rapid separation and enrichment of targets in biological matrixes are of significant interest in multiple life sciences disciplines. Molecularly imprinted polymers (MIPs) have vital applications in extraction and sample cleanup owing to their excellent specificity and selectivity. However, the low mass transfer rate, caused by the heterogeneity of imprinted cavities in polymer networks and strong driving forces, significantly limits its application in high-throughput analysis. Herein, one novel metal affinity-oriented surface imprinting method was proposed to fabricate an MIP with an ultrathin imprinting layer. MIPs were prepared by immobilized template molecules on magnetic nanoparticles (NPs) with metal ions as bridges via coordination, and then polymerization was done. Under the optimized conditions, the thickness of the imprinting layer was merely 1 nm, and the adsorption toward VAL well matched the Langmuir model. Moreover, it took just 5 min to achieve adsorption equilibrium significantly faster than other reported MIPs toward VAL. Adsorption capacity still can reach 25.3 mg/g ascribed to the high imprinting efficiency of the method (the imprinting factor was as high as 5). All evidence proved that recognition sites were all external cavities and were evenly distributed on the surface of the NPs. The obtained MIP NPs exhibited excellent selectivity and specificity toward VAL, with good dispersibility and stability. Coupled with high-performance liquid chromatography, it was successfully used as a dispersed solid phase extraction material to determine VAL in serum. Average recoveries are over 90.0% with relative standard deviations less than 2.14% at three spiked levels (n = 3). All evidence testified that the MIPs fabricated with the proposed method showed a fast trans mass rate and a large rebinding capacity. The method can potentially use high-throughput separation and enrichment of target molecules in batch samples to meet practical applications.
Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Valsartana , Adsorção , Polímeros Molecularmente Impressos/química , Valsartana/química , Propriedades de Superfície , Nanopartículas de Magnetita/química , Cromatografia Líquida de Alta PressãoRESUMO
Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high-signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue-clearing methods, such as ClearT and ClearT2 The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.
Assuntos
Encéfalo/diagnóstico por imagem , Corantes Fluorescentes , Imageamento Tridimensional , Bainha de Mielina , Nervo Isquiático/diagnóstico por imagem , Animais , CamundongosRESUMO
The overuse of fipronil (FPN, a broad-spectrum insecticide) in agriculture has brought great concerns for environmental pollution and food safety. The development of a rapid, reliable, and portable analytical method for the on-site monitoring of FPN is therefore of great significance but is full of challenge. Herein, a novel supramolecular probe using human serum albumin (HSA) as the host and an aggregation-induced emission-active fluorescence probe LIQ-TPA-TZ as the guest was developed for the colorimetric and ratiometric detection of FPN, displaying fast response (30 s), high sensitivity (LOD â¼ 0.05 µM), and good selectivity and anti-interference performance. Moreover, portable paper-based test strips could be facilely obtained and utilized for the determination of FPN, showing colorimetric changes from yellow to orange. This supramolecular probe also demonstrated great potential in real applications for choosing the best cleaning method to reduce the residue rate of FPN on apples. This study provides a versatile tool for the fast and real-time analysis of FPN, which greatly benefits the on-site determination of pesticides with the use of simple testing apparatus.
RESUMO
Adiponectin (APN) is a kind of endogenous anti-tumor adipocytokine, which exerts its function by binding to its receptors (AdipoR1 and AdipoR2). However, hyperadiponectinemia is found in some pathophysiological processes without significant protective effect, which indicates the existence of APN resistance. Here, we aimed to investigate the locoregional expression of APN in tongue squamous cell carcinoma (TSCC) tissues, and to explore the potential regulatory mechanism of APN resistance under hypoxia. Consequently, we found that the protein expression of APN and AdipoR1, but not AdipoR2, was upregulated in the early stage of TSCC and after hypoxic treatment ex vivo and in vitro. Knockdown of HIF-1α decreased the level of APN and AdipoR1, and simultaneously, HIF-1α was identified as transcriptor of the APN. Intriguingly, a regenerative feedback of HIF-1α was unexpectedly detected after application of recombinant globular APN (gAPN), which most likely contributed to the APN resistance. Furthermore, HIF-1α blockade combined with gAPN has a prominent synergistic antitumor effect, which suggested an effective amelioration in APN resistance. In all, our study revealed the possible mechanism of APN resistance under hypoxia and provides a promising strategy of bi-target treatment with APN and HIF-1α for TSCC therapy.
Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Adiponectina/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/patologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
A high-fat diet (HFD) causes obesity-associated morbidities involved in macroautophagy and chaperone-mediated autophagy (CMA). AMPK, the mediator of macroautophage, has been reported to be inactivated in HFD-caused renal injury. However, PAX2, the mediator for CMA, has not been reported in HFD-caused renal injury. Here we report that HFD-caused renal injury involved the inactivation of Pax2 and Ampk, and the activation of soluble epoxide hydrolase (sEH), in a murine model. Specifically, mice fed on an HFD for 2, 4, and 8 wk showed time-dependent renal injury, the significant decrease in renal Pax2 and Ampk at both mRNA and protein levels, and a significant increase in renal sEH at mRNA, protein, and molecular levels. Also, administration of an sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea, significantly attenuated the HFD-caused renal injury, decreased renal sEH consistently at mRNA and protein levels, modified the renal levels of sEH-mediated epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) as expected, and increased renal Pax2 and Ampk at mRNA and/or protein levels. Furthermore, palmitic acid (PA) treatment caused significant increase in Mcp-1, and decrease in both Pax2 and Ampk in murine renal mesangial cells (mRMCs) time- and dose-dependently. Also, 14(15)-EET (a major substrate of sEH), but not its sEH-mediated metabolite 14,15-DHET, significantly reversed PA-induced increase in Mcp-1, and PA-induced decrease in Pax2 and Ampk. In addition, plasmid construction revealed that Pax2 may positively regulate Ampk transcriptionally in mRMCs. This study provides insights into and therapeutic target for the HFD-mediated renal injury.
Assuntos
Adenilato Quinase/metabolismo , Dieta Hiperlipídica , Epóxido Hidrolases/antagonistas & inibidores , Rim/lesões , Fator de Transcrição PAX2/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/metabolismo , Hipertrofia , Rim/patologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Ácido Palmítico , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Solubilidade , Fatores de Tempo , Aumento de PesoRESUMO
COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in global social and economic disruption, putting the world economy to the largest global recession since the Great Depression. To control the spread of COVID-19, cutting off the transmission route is a critical step. In this work, the efficient inactivation of human coronavirus with photodynamic therapy (PDT) by employing photosensitizers with aggregation-induced emission characteristics (DTTPB) is reported. DTTPB is designed to bear a hydrophilic head and two hydrophobic tails, mimicking the structure of phospholipids on biological membranes. DTTPB demonstrates a broad absorption band covering the whole visible light range and high molar absorptivity, as well as excellent reactive oxygen species sensitizing ability, making it an excellent candidate for PDT. Besides, DTTPB can target membrane structure, and bind to the envelope of human coronaviruses. Upon light irradiation, DTTPB demonstrates highly effective antiviral behavior: human coronavirus treated with DTTPB and white-light irradiation can be efficiently inactivated with complete loss of infectivity, as revealed by the significant decrease of virus RNA and proteins in host cells. Thus, DTTPB sensitized PDT can efficiently prevent the infection and the spread of human coronavirus, which provides a new avenue for photodynamic combating of COVID-19.
Assuntos
COVID-19 , Fotoquimioterapia , Humanos , Pandemias , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , SARS-CoV-2RESUMO
Background Early stage hepatocellular carcinoma (HCC) is the ideal candidate for resection in patients with preserved liver function; however, cancer will recur in half of these patients and no reliable prognostic tool has been established. Purpose To investigate the effectiveness of radiomic features in predicting tumor recurrence after resection of early stage HCC. Materials and Methods In total, 295 patients (median age, 58 years; interquartile range, 50-65 years; 221 men) who underwent contrast material-enhanced CT and curative resection for early stage HCC that met the Milan criteria between February 2009 and December 2016 were retrospectively recruited from three independent institutions. Follow-up consisted of serum α-fetoprotein level, liver function tests, and dynamic imaging examinations every 3 months during the first 2 years and then every 6 months thereafter. In the development cohort of 177 patients from institution 1, recurrence-related radiomic features were computationally extracted from the tumor and its periphery and a radiomics signature was built with least absolute shrinkage and selection operator regression. Two models, one integrating preoperative and one integrating pre- and postoperative variables, were created by using multivariable Cox regression analysis. An independent external cohort of 118 patients from institutions 2 and 3 was used to validate the proposed models. Results The preoperative model integrated radiomics signature with serum α-fetoprotein level and tumor number; the postoperative model incorporated microvascular invasion and satellite nodules into the above-mentioned predictors. In both study cohorts, two radiomics-based models provided better predictive performance (concordance index ≥0.77, P < .05 for all), lower prediction error (integrated Brier score ≤0.14), and larger net benefits, as determined by means of decision curve analysis, than rival models without radiomics and widely adopted staging systems. The radiomics-based models gave three risk strata with high, intermediate, or low risk of recurrence and distinct profiles of recurrent tumor number. Conclusion The proposed radiomics models with pre- and postresection features helped predict tumor recurrence for early stage hepatocellular carcinoma. © RSNA, 2020 Online supplemental material is available for this article.
Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/patologia , Meios de Contraste , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Prognóstico , Estudos RetrospectivosRESUMO
Acute kidney injury (AKI) causes severe morbidity and mortality for which new therapeutic strategies are needed. Docosahexaenoic acid (DHA), arachidonic acid (ARA), and their metabolites have various effects in kidney injury, but their molecular mechanisms are largely unknown. Here, we report that 14 (15)-epoxyeicosatrienoic acid [14 (15)-EET] and 19 (20)-epoxydocosapentaenoic acid [19 (20)-EDP], the major epoxide metabolites of ARA and DHA, respectively, have contradictory effects on kidney injury in a murine model of ischemia/reperfusion (I/R)-caused AKI. Specifically, 14 (15)-EET mitigated while 19 (20)-EDP exacerbated I/R kidney injury. Manipulation of the endogenous 19 (20)-EDP or 14 (15)-EET by alteration of their degradation or biosynthesis with selective inhibitors resulted in anticipated effects. These observations are supported by renal histological analysis, plasma levels of creatinine and urea nitrogen, and renal NGAL. The 14 (15)-EET significantly reversed the I/R-caused reduction in glycogen synthase kinase 3ß (GSK3ß) phosphorylation in murine kidney, dose-dependently inhibited the hypoxia/reoxygenation (H/R)-caused apoptosis of murine renal tubular epithelial cells (mRTECs), and reversed the H/R-caused reduction in GSK3ß phosphorylation in mRTECs. In contrast, 19 (20)-EDP dose-dependently promoted H/R-caused apoptosis and worsened the reduction in GSK3ß phosphorylation in mRTECs. In addition, 19 (20)-EDP was more metabolically stable than 14 (15)-EET in vivo and in vitro. Overall, these epoxide metabolites of ARA and DHA function conversely in I/R-AKI, possibly through their largely different metabolic stability and their opposite effects in modulation of H/R-caused RTEC apoptosis and GSK3ß phosphorylation. This study provides AKI patients with promising therapeutic strategies and clinical cautions.
Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Injúria Renal Aguda/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Túbulos Renais/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Ácidos Docosa-Hexaenoicos/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lipocalina-2/genética , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Traumatismo por Reperfusão/mortalidade , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Análise de SobrevidaRESUMO
The chromosome periphery (CP) is a complex network that covers the outer surface of chromosomes. It acts as a carrier of nucleolar components, helps maintain chromosome structure, and plays an important role in mitosis. Current methods for fluorescence imaging of CP largely rely on immunostaining. We herein report a small-molecule fluorescent probe, ID-IQ, which possesses aggregation-induced emission (AIE) property, for CP imaging. By labelling the CP, ID-IQ sharply highlighted the chromosome boundaries, which enabled rapid segmentation of touching and overlapping chromosomes, direct identification of the centromere, and clear visualization of chromosome morphology. ID-IQ staining was also compatible with fluorescence inâ situ hybridization and could assist the precise location of the gene in designated chromosome. Altogether, this study provides a versatile cytogenetic tool for improved chromosome analysis, which greatly benefits the clinical diagnostic testing and genomic research.
Assuntos
Cromossomos/metabolismo , Análise Citogenética/métodos , Corantes Fluorescentes/química , Carbolinas/química , Linhagem Celular Tumoral , Centrômero/metabolismo , Cromossomos/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Células-Tronco Pluripotentes Induzidas , Linfócitos , Microscopia Confocal , Microscopia de FluorescênciaRESUMO
Cancer is a global health issue and a leading cause of death. The discrimination of cancer cells from normal cells is of significant importance for the early diagnosis of cancers. As one of the useful biomarkers for developing cancer diagnosis and chemotherapy resistance systems, biothiols not only play an essential role in physiological and pathological processes but also exhibit cytoprotective effects in the susceptibility to carcinogenesis. It would be highly desirable to explore near-infrared biothiol-specific fluorescent probes for cancer diagnosis with outstanding specificity. In this study, a novel near-infrared fluorescent probe BPO-THAZ decorated with thiazole as a recognition site was presented for sensitive and selective detection of endogenous biothiols. BPO-THAZ can be used to not only evaluate the biothiol level in living HeLa cells upon treatment with H2O2 or anti-cancer drugs but also assess endogenous biothiols in stem cells. Furthermore, BPO-THAZ was successfully utilized to discriminate cancer cells from normal cells showing great promise for cancer diagnosis.
Assuntos
Corantes Fluorescentes/química , Compostos de Sulfidrila/análise , Tiazóis/química , Animais , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Fluoresceínas/síntese química , Fluoresceínas/química , Fluoresceínas/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Limite de Detecção , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Células NIH 3T3 , Células-Tronco Pluripotentes , Tiazóis/síntese química , Tiazóis/toxicidadeRESUMO
As the members of reactive sulfur species, SO2 and biothiols play a significant role in physiological and pathological processes and directly influence numerous diseases. Furthermore, SO2 and biothiols can provide a reductive environment for lysosomes to carry out their optimal functionality. To this end, the development of single fluorescent probes for imaging SO2 and biothiols from different emission channels is highly desirable for understanding their physiological nature. Here, a lysosome-targeted fluorescent probe (BPO-DNSP) with a dual reaction site for SO2 and biothiols was presented. BPO-DNSP can sensitively and selectively respond to SO2 in the green channel with a large Stokes shift over 105 nm, and to biothiols in the near-infrared emission channel with a large Stokes shift over 109 nm. The emission shift for the two channels was as high as 170 nm. Colocalization experiments verified that BPO-DNSP can selectively enrich lysosomes. Notably, BPO-DNSP can not only be used to image intracellular SO2 and biothiols from two different channels, but also to monitor the conversion of biothiols to SO2 without adding exogenous enzymes in living HeLa cells.
Assuntos
Lisossomos/metabolismo , Imagem Individual de Molécula/métodos , Compostos de Sulfidrila/metabolismo , Dióxido de Enxofre/metabolismo , Corantes Fluorescentes/química , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Espectrometria de FluorescênciaRESUMO
A novel chromenylium-based fluorescent probe was exploited for sulphur dioxide (SO2) detecting. The probe displayed a remarkable fluorescence turn-on response towards SO2 based on the nucleophilic addition reaction to the carbon-carbon double bond with 105 nm Stock shift. The probe was successfully applied for the quantification of SO2.The linear detection range was from 0-160 µM with the detection limit as low as 99.27 nM. It also exhibited high selectivity for SO2 than other reactive species and amino acids. Furthermore, cell staining experiments indicated that the probe was cell membrane permeable and could be used for high-performance imaging of SO2 in living cells. The superior properties of the probe made it highly promising for use in chemical and biological applications.
Assuntos
Corantes Fluorescentes/síntese química , Dióxido de Enxofre/análise , Técnicas Biossensoriais , Colorimetria , Corantes Fluorescentes/química , Células HeLa , Humanos , Limite de Detecção , Imagem Óptica/métodosRESUMO
A selenium-contained fluorescent 'turn-on' probe D-HMSe was developed for monitoring hydrogen peroxide. The probe D-HMSe is highly selective to hydrogen peroxide over other reactive oxygen species (ROS). An aggregation-induced enhancement (AIE) phenomenon was involved in the sensing process.
Assuntos
Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Selênio/química , Cromatografia Líquida de Alta Pressão , Dimetil Sulfóxido/química , Corantes Fluorescentes/síntese química , Microscopia Eletrônica de Varredura , Processos Fotoquímicos , Espectrometria de Fluorescência , Temperatura , Água/químicaRESUMO
Clinical multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is the leading cause of refractory bacterial keratitis (BK). However, the reported BK treatment methods lack biosecurity and bioavailability, which usually causes irreversible visual impairment and even blindness. Herein, for BK caused by clinically isolated MDR-PA infection, armed phages are modularized with the type I photosensitizer (PS) ACR-DMT, and an intelligent phage eyedrop is developed for combined phagotherapy and photodynamic therapy (PDT). These eyedrops maximize the advantages of bacteriophages and ACR-DMT, enabling more robust and specific targeting killing of MDR-PA under low oxygen-dependence, penetrating and disrupting biofilms, and efficiently preventing biofilm reformation. Altering the biofilm and immune microenvironments alleviates inflammation noninvasively, promotes corneal healing without scar formation, protects ocular tissues, restores visual function, and prevents long-term discomfort and pain. This strategy exhibits strong scalability, enables at-home treatment of ocular surface infections with great patient compliance and a favorable prognosis, and has significant potential for clinical application.
Assuntos
Bacteriófagos , Farmacorresistência Bacteriana Múltipla , Fotoquimioterapia , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fotoquimioterapia/métodos , Soluções Oftálmicas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/terapia , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/terapia , Humanos , Biofilmes/efeitos dos fármacos , Terapia por Fagos/métodosRESUMO
Self-assembly processes commonly occur in various biological contexts to form functional biological structures. However, the self-assembly of nanofibers within cells by heterologous molecules showing a biological function is rare. In this work, we reported the intracellular formation of fluorescent nanofibers by a natural small molecule, lycobetaine (LBT), which facilitated the direct physical connection between mitochondria and synchronized their membrane potential oscillations. The luminescent properties of LBT enabled the real-time observation of nanofiber formation, while the semiconductive nature of the LBT nanofiber facilitated electrical signal transduction among the connected mitochondria. This study introduces an approach to modulate mitochondrial connectivity within cells using "nano-cables" which facilitate studies on synchronized mitochondrial operations and the underlying mechanisms of drug action.
Assuntos
Mitocôndrias , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Nanofibras/química , Corantes Fluorescentes/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Células HeLaRESUMO
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Progressão da Doença , MicroRNAs , RNA Circular , Transdução de Sinais , Proteína Supressora de Tumor p53 , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Transdução de Sinais/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Modelos Animais de Doenças , MasculinoRESUMO
A real-time colorimetric and ratiometric fluorescent probe based on modulating the intramolecular charge transfer (ICT) of the coumarin platform for selective detection of sulfite is presented. This reaction based probe utilized the Michael addition to the dicyano-vinyl group with the detection limit of 5.8 × 10(-5) M. The probe displayed a high selectivity for sulfite over other anions and reactive sulfur especially for biothiols including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), with about 100 nm blue shift and more than 230 times intensity ratios change of the emission spectrum. Meanwhile, it could be easily observed that the probe for sulfite changes from red to pale yellow by the naked eye, and from red to blue under UV lamp immediately after the sulfite is added. To the best of our knowledge, it is the fastest response probe for sulfite ever reported, which could give a colorimetric and ratiometric fluorescent response instantly.
Assuntos
Corantes Fluorescentes/química , Sulfitos/análise , Colorimetria , Fatores de TempoRESUMO
An ensemble-based fluorescent sensor HS-1 + Cu(2+) for detection of histidine is reported. Complex HS-1 + Cu(2+) sensitively senses histidine at pH 7.4 in aqueous media. The quantitative determination of histidine in urine and fetal calf serum is also conducted.
Assuntos
Aminas/química , Cobre/química , Cumarínicos/química , Corantes Fluorescentes/química , Histidina/sangue , Histidina/urina , Ácidos Picolínicos/química , Animais , Humanos , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodosRESUMO
A magnetic molecularly imprinted polymer was developed with an epitope peptide of human VEGF as a template via an epitope blotting technique. As a drug-free agent, the nanoparticles can significantly suppress the proliferation of tumor cells by integrating anti-angiogenesis and photothermotherapy. This work provides a successful example of the design of multimodal antineoplastic drugs.
Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Fator A de Crescimento do Endotélio Vascular , Polímeros/farmacologia , Terapia Fototérmica , Fenômenos Magnéticos , Epitopos , Impressão Molecular/métodosRESUMO
Bacterial infections remain a major cause of morbidity worldwide due to drug resistance of pathogenic bacteria. Photodynamic therapy (PDT) has emerged as a promising approach to overcome this drug resistance. However, existing photosensitizers (PSs) are broad-spectrum antibacterial agents that dysregulate the microflora balance resulting in undesirable side effects. Herein, we synthesized a series of aggregation-induced emission (AIE)-active PSs with a lipophilic cationic AIE core with varying charges, named TBTCP and its derivatives. The association of the difference in their molecular charge with the antibacterial effects was systemically investigated. Among the derivatives presented, TBTCP-SF with the electronegative sulfonate group nulled its ability to bind to and ablate Gram-positive (G+) or Gram-negative (G-) bacteria. TBTCP-QY modified by electropositive quaternary ammonium facilitated binding and augmented the photodynamic antibacterial activity for both G+ and G- bacteria. TBTCP-PEG with hydrophilic neutral ligands selectively bound and inactivated G+ bacteria. Under white-light illumination, TBTCP-PEG ablated 99.9% methicillin-resistant Staphylococcus aureus (MRSA) and promoted wound healing in MRSA-infected mice, eliminating MRSA infection both in vitro and in vivo. Our work provides unprecedented insight into the utility of AIE-active PSs for highly targeted and efficient photodynamic ablation of either G+ or G- bacteria that can be translated to next-generation antibacterial materials.