Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nitric Oxide ; 145: 49-56, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364967

RESUMO

The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.


Assuntos
Colorimetria , Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Compostos Azo
2.
J Cell Mol Med ; 26(5): 1643-1655, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098646

RESUMO

Osteoporosis is one of the leading forms of systemic diseases related to bone metabolism in the world. STARD3 N-terminal like (STARD3NL) showed robust association with osteoporosis-related traits. Yet, the molecular functional mechanisms of STARD3NL in osteoblasts is still obscure. In this study, we demonstrated a high level of STARD3NL expression in the bone tissues from the patients with low bone mass and ovariectomized (OVX)-induced osteoporotic mice. We identified Stard3nl as a potent factor that negatively and positively regulates osteoblast differentiation and cell proliferation, respectively. Furthermore, inhibition of Stard3nl induced ß-catenin gene expression and the nuclear translocation of ß-catenin, as well as Wnt signalling activities, contributing to the activation of Wnt/ß-catenin signalling. Mechanistic studies revealed that Stard3nl bound with Annexin A2 (Anxa2) to suppress ß-catenin expression, resulting into the suppression of Wnt signalling and downstream osteogenic differentiation. Moreover, adeno-associated virus 9 (AAV9)-mediated silencing of Stard3nl reversed bone loss in OVX-induced osteoporotic mice by the injection into the knee joints. Collectively, our study revealed that Stard3nl suppressed osteogenesis via binding with Anxa2, resulting into the inactivation of Wnt signalling. It also highlights the preventive and therapeutic potential of STARD3NL as a specific and novel target for osteoporotic patients.


Assuntos
Anexina A2 , Células-Tronco Mesenquimais , Osteoporose , Animais , Anexina A2/genética , Anexina A2/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Humanos , Proteínas de Membrana , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
3.
J Cell Mol Med ; 26(8): 2377-2391, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257481

RESUMO

Neuroblastoma (NB), an embryonic tumour originating from sympathetic crest cells, is the most common extracranial solid tumour type in children with poor overall prognosis. Accumulating evidence has demonstrated the involvement of long non-coding RNA (lncRNA) in numerous biological processes and their associations with embryonic development and multiple diseases. Ectopic lncRNA expression is linked to malignant tumours. Previous studies by our team indicate that MEG3 attenuates NB autophagy through inhibition of FOXO1 and epithelial-mesenchymal transition via the mTOR pathway in vitro. Moreover, MEG3 and EZH2 negatively regulate each other. In present study, we first collected 60 NB tissues and 20 adjacent tissues for Quantitative real-time polymerase chain reaction (Q-PCR) experiments and performed clinical correlation analysis of the results. At the same time, nude mice were used for subcutaneous tumour formation to detect the effect of MEG3 in vivo. Two NB cell lines, SK-N-AS and SK-N-BE(2)C, were overexpressed MEG3 and rescued with EZH2 and then were subjected to proliferation, migration, invasion, apoptosis and autophagy experiments. RNA-binding protein immunoprecipitation (RIP) and Co-Immunoprecipitation (Co-IP) experiments were performed to explore the molecular mechanism of MEG3 and EZH2 interaction. Q-PCR revealed that MEG3 expression was negatively correlated with INSS stage and risk grade of NB. Moreover, MEG3 overexpression was associated with inhibition of NB growth in vivo. MEG3 exerted an anti-cancer effect via stimulatory effects on EZH2 ubiquitination leading to its degradation. Conversely, EZH2 interacted with DNMT1 and HDAC1 to induce silencing of MEG3. The EZH2 inhibitor, DZNep, and HDAC inhibitor, SAHA, displayed synergistic activity against NB. Combined treatment with DZNep and SAHA inhibited proliferation, migration and invasion of NB through suppression of the PI3K/AKT/mTOR/FOXO1 pathway. In conclusion, downregulation of MEG3 and upregulation of EZH2 forms a feedback loop that concertedly promotes the development of NB. Combined blockage of EZH2 and HDAC1 with the appropriate inhibitors may therefore present an effective treatment strategy for NB cases with low MEG3 and high EZH2 expression.


Assuntos
Neuroblastoma , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Neuroblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/genética
4.
Ophthalmic Res ; 65(2): 131-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34969027

RESUMO

Congenital ptosis, a birth defects presents at birth or by 1 year of age, is characterized by the drooping of the upper eyelid. Either in isolation (nonsyndromic) or with many different systemic disorders (syndromic). The estimated prevalence of ptosis (congenital and acquired) ranges from 0.79 to 1.99 per 10,000 people in different populations, and it is more prevalent in males. The underlying pathogenesis of congenital ptosis is myogenic and neurogenic, related to the development of muscles and nerves. Although most cases are sporadic, there are familial transmission characteristics, including autosomal dominant, recessive mode, and X-linkage inheritance patterns. Moreover, some forms are due to chromosomal aberrations and mutations and deletions in mitochondrial DNA. Genes involved in simple congenital ptosis (SCP) are ZFHX4 and COL25A1. The clinical aspects of various syndromes involving congenital ptosis are partly caused by single-gene mutations. However, the pathogenesis of congenital ptosis is not fully understood. We review the reported epidemiology, genetics, and clinical features of congenital ptosis and associated syndromes here.


Assuntos
Blefaroptose , Músculos Oculomotores , Blefaroptose/genética , Pálpebras , Humanos , Recém-Nascido , Masculino , Desenvolvimento Muscular , Síndrome
5.
Dermatol Ther ; 34(2): e14745, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33405341

RESUMO

Keloid is a kind of pathological skin scar with unclear molecular pathology. Circular RNAs (circRNAs) are involved in the occurrence and development of many diseases; however, their relationship with keloid is not well understood. To investigate the involvement of dysregulated circRNAs in keloid. Thirty-seven keloids and 37 normal skin tissues were collected, and the changes of circRNAs, microRNAs (miRNAs) and mRNAs in 3 keloids and 3 normal samples by high-throughput sequencing were detected first. Based on the circRNA-miRNA-mRNA interaction network construction, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis combining several signaling pathways associated with keloid formation and progression, the circRNAs required further verification were screened out. The expression levels of the selected circRNAs were verified in 37 keloids and 37 normal skin tissues using quantitative real-time polymerase chain reaction (QPCR). The interaction of candidate circRNA and its predicted binding miRNA was tested by dual-luciferase reporter gene experiment. Compared with normal controls, there was an average of 120 and 12 circRNAs, 44 and 63 miRNAs, 656 and 156 mRNAs were upregulated and downregulated, respectively, in keloids. According to the analysis of bioinformation, six circRNAs were picked out. The QPCR validation results of two upregulated circRNAs (hsa_circ_0001320 and circCOL5A1) were consistent with previous sequencing results. The interaction between hsa_circ_0001320 and miR-574-5p was confirmed. This study makes it clear that the abnormal expression of circRNAs may be related to the pathological process of keloid.


Assuntos
Queloide , MicroRNAs , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Queloide/genética , MicroRNAs/genética , RNA Circular , Pele
6.
Sensors (Basel) ; 20(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751740

RESUMO

Laser-induced graphene (LIG) has the advantages of one-step fabrication, prominent mechanical performance, as well as high conductivity; it acts as the ideal material to fabricate flexible strain sensors. In this study, a wearable flexible strain sensor consisting of three-dimensional (3D) wavy LIG and silicone rubber was reported. With a laser to scan on a polyimide film, 3D wavy LIG could be synthesized on the wavy surface of a mold. The wavy-LIG strain sensor was developed by transferring LIG to silicone rubber substrate and then packaging. For stress concentration, the ultimate strain primarily took place in the troughs of wavy LIG, resulting in higher sensitivity and less damage to LIG during stretching. As a result, the wavy-LIG strain sensor achieved high sensitivity (gauge factor was 37.8 in a range from 0% to 31.8%, better than the planar-LIG sensor), low hysteresis (1.39%) and wide working range (from 0% to 47.7%). The wavy-LIG strain sensor had a stable and rapid dynamic response; its reversibility and repeatability were demonstrated. After 5000 cycles, the signal peak varied by only 2.32%, demonstrating the long-term durability. Besides, its applications in detecting facial skin expansion, muscle movement, and joint movement, were discussed. It is considered a simple, efficient, and low-cost method to fabricate a flexible strain sensor with high sensitivity and structural robustness. Furthermore, the wavy-LIG strain senor can be developed into wearable sensing devices for virtual/augmented reality or electronic skin.


Assuntos
Grafite , Lasers , Elastômeros de Silicone , Dispositivos Eletrônicos Vestíveis , Luz
7.
Sensors (Basel) ; 19(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585200

RESUMO

We established the vibration governing equation for a magnetoelastic (ME) biosensor with target loading in liquid. Based on the equation, a numerical simulation approach was used to determine the effect of the target loading position and viscous damping coefficient on the node ("blind points") and mass sensitivity (Sm) of an ME biosensor under different order resonances. The results indicate that viscous damping force causes the specific nodes shift but does not affect the overall variation trend of Sm as the change of target loading position and the effect on Sm gradually reduces when the target approaches to the node. In addition, Sm decreases with the increase of viscous damping coefficient but the tendency becomes weak at high-order resonance. Moreover, the effect of target loading position on Sm decreases with the increase of viscous damping coefficient. Finally, the results provide certain guidance on improving the mass sensitivity of an ME biosensor in liquid by controlling the target loading position.


Assuntos
Técnicas Biossensoriais , Fenômenos Físicos , Viscosidade , Fenômenos Mecânicos , Peso Molecular , Vibração
8.
Cell Signal ; 115: 111017, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38123043

RESUMO

Microtia is one of the most common craniofacial birth defects worldwide, and its primary clinical manifestation is auricle deformity. Epigenetic factors are known to contribute to the etiology of microtia, yet the involvement of circular RNAs (circRNAs) in human auricle development and their association with microtia remains poorly understood. In this study, we aimed to analyze differentially expressed circRNAs and explore their functional implications in isolated microtia. By employing circRNA microarray analysis and bioinformatics approaches, we identified 340 differentially expressed circRNAs in auricle cartilage of patients with isolated microtia, comprising 152 upregulated and 188 downregulated circRNAs. A circRNA-mRNA co-expression network was constructed, followed by gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Subsequently, we selected four significantly upregulated circRNAs from the co-expression network based on their association with cartilage development and validated their expressions in 30 isolated microtia and 30 control clinical auricle cartilage samples. Among these circRNAs, circCOL1A2, the most significantly upregulated circRNA, was selected as a representative circRNA for investigating its role in isolated microtia. Overexpression of circCOL1A2 significantly inhibited chondrocyte proliferation and chondrogenic differentiation of human mesenchymal stem cells. Additionally, circCOL1A2 upregulated Dermatan Sulfate Epimerase Like (DSEL) expression by sponging miR-637 through the competing endogenous RNA (ceRNA) mechanism. Notably, the downregulation of DSEL attenuated the inhibitory effect of circCOL1A2 overexpression on cell proliferation and chondrogenic differentiation. Collectively, these findings highlight the involvement of circCOL1A2 in the pathogenesis of isolated microtia and emphasize the potential significance of dysregulated circRNAs in disease development.


Assuntos
Microtia Congênita , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Microtia Congênita/genética , Perfilação da Expressão Gênica , Cartilagem/metabolismo
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692102

RESUMO

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Assuntos
Cumarínicos , Corantes Fluorescentes , Óxidos de Nitrogênio , Cumarínicos/química , Humanos , Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/análise , Espectrometria de Fluorescência , Células HeLa
10.
Front Oncol ; 13: 1133055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593100

RESUMO

Background: Although numerous case-control studies have explored the association between CC cytokine ligand-4 (CCL4) expression and cancer susceptibility, their results have been conflicting. This study aimed to determine the still-unknown connection of CCL4 rs10491121 and rs163450 polymorphisms with cancer susceptibility. Methods: Several databases, such as Web of Science, PubMed, and EMBASE, were searched for papers published since the creation of the database until November 2, 2022. Using RevMan 5.4 and StataMP 17 softwares, meta-analysis and subgroup analysis were performed after article screening and data extraction. For sensitivity analyses, one-by-one exclusion method was used, and then, the comprehensive effect was estimated and compared with that before exclusion. Trial sequential analysis (TSA)was performed using TSA 0.9.5.10 beta software. Results: Seven case-control studies encompassing 3559 cases and 4231 controls were included. The P value was greater than 0.05 for all models, indicating the absence of an evident relationship of CCL4 gene rs10491121 and rs1634507 polymorphisms with cancer susceptibility. However, in the subgroup analysis of rs10491121, the P values in all models studied by us except GA vs. AA were <0.05 considering the Chinese subgroup, suggesting that the G allele is a risk factor for cancer in the Chinese population. Besides, in the subgroup analysis of rs1634507 considering oral cancer, the co-dominant model GG vs. TT, dominant model GG + GT vs. TT, and allele model G vs. T groups showed OR < 1 and P < 0.05, indicating that the G allele was a protective factor of oral cancer. However, for other cancer types, all the models studied by us except GG vs. GT showed OR > 1 and P < 0.05, indicating that the G allele was a risk factor for these other cancers. Despite the statistically significant results, sensitivity analysis had some stability limitations, and TSA results suggested the possibility of false positives. Conclusion: For rs10491121, we identified an association between the G allele and increased cancer risk in the Chinese population. For rs1634507, the G allele was not found to be associated with reduced risk of oral cancer and increased risk of other cancers studied by us.

11.
Int J Biol Macromol ; 224: 1244-1251, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306916

RESUMO

The controlled release of nitric oxide (NO) is significantly crucial in the NO-related biomedical field. In the current work, the controlled release of NO from alginate microspheres was achieved through the direct impregnation of S-nitroso-N-acetyl-penicillamine (SNAP) in the gelation of sodium alginate with calcium ions. The loading rate of SNAP in alginate microspheres was obtained in a range of 0.69 %­27.5 %. Specifically, the longest NO release time reached up to ∼93 h. Furthermore, the structure, thermal properties, and morphology were fully characterized. During the antibacterial studies, the NO-releasing spheres can produce a great bactericidal effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The alginate microspheres impregnated with 315 mg SNAP (sphere size: 2.88 mm) can effectively reduce the number of bacteria by 7 orders of magnitude with an inhibition rate up to 100 %. Therefore, we anticipated that these NO-releasing alginate microspheres would have great potential for biomedical-related applications.


Assuntos
Alginatos , Óxido Nítrico , Óxido Nítrico/química , Preparações de Ação Retardada/química , Alginatos/química , Microesferas , Staphylococcus aureus , Escherichia coli , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Antibacterianos/farmacologia
12.
Int J Biol Macromol ; 241: 124564, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094648

RESUMO

Conductive hydrogels have promising applications in flexible electronic devices and artificial intelligence, which have attracted much attention in recent years. However, most conductive hydrogels have no antimicrobial activity, inevitably leading to microbial infections during utilization. In this work, a series of antibacterial and conductive polyvinyl alcohol and sodium alginate (PVA-SA) hydrogels were successfully developed with the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) and MXene through a freeze-thaw approach. Due to the reversibility of hydrogen bonding and electrostatic interactions, the resulting hydrogels had excellent mechanical properties. Specifically, the presence of MXene readily interrupted the crosslinked hydrogel network, but the best stretching can reach up to >300 %. Moreover, the impregnation of SNAP achieved the release of nitric oxide (NO) over several days under physiological conditions. Due to the release of NO, these composited hydrogels demonstrated high antibacterial activities (> 99 %) against both Gram-positive and negative S. aureus and E. coli bacteria. Notably, the excellent conductivity of MXene endowed the hydrogel with a sensitive, fast, and stable strain-sensing ability, to accurately monitor and distinguish subtle physiological activities of the human body including finger bending and pulse beating. These novel composited hydrogels are likely to have potential as strain-sensing materials in the field of biomedical flexible electronics.


Assuntos
Inteligência Artificial , Escherichia coli , Humanos , Óxido Nítrico , Álcool de Polivinil , Staphylococcus aureus , Alginatos , Antibacterianos/farmacologia , Condutividade Elétrica , Hidrogéis , S-Nitroso-N-Acetilpenicilamina
13.
Int J Biol Macromol ; 252: 126371, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595726

RESUMO

Currently, the controlled release of nitric oxide (NO) plays a crucial role in various biomedical applications. However, injectable NO-releasing materials remain an underexplored research field to date. In this study, via the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) as an NO donor, a family of NO-releasing injectable hydrogels was synthesized through the in situ cross-linking between sodium alginate and calcium ion induced by D-(+)-gluconate δ-lactone as an initiator. Initially, the organic functional groups and the corresponding morphologies of the resulting injectable hydrogels were characterized by IR and SEM spectroscopies, respectively. The NO release times of hydrogels with different SNAP loading amounts could reach up to 36-47 h. Due to the release of NO, the highest antibacterial rates of these injectable hydrogels against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were up to 95 %, respectively. Furthermore, the matrix of these hydrogels demonstrated great water absorption ability, swelling behavior, and degradation performance. Finally, we expect that these NO-releasing injectable hydrogels could have great potential applications various biomedical material fields.


Assuntos
Hidrogéis , Óxido Nítrico , Óxido Nítrico/metabolismo , Hidrogéis/farmacologia , Alginatos , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia
14.
Antioxidants (Basel) ; 11(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35204232

RESUMO

Nonalcoholic fatty liver disease (NAFLD) occurs when excess fat is stored in the liver and it is strongly linked with metabolic syndrome and oxidative stress. Selenium (Se) is an essential micronutrient in animals, which has a variety of biological functions, including antioxidant and anti-inflammatory. However, the exact effect of dietary selenium on NAFLD and the underlying molecular mechanism are not yet clear. Herein, we fed a high-fat diet (HFD) to C57BL/6 mice to construct an in vivo NAFLD model, treated AML-12 cells with palmitic acid (PA) to construct an in vitro NAFLD model, and AML-12 cells were stimulated with H2O2 to induce hepatocyte oxidative stress and then treated with adequate selenium. We observed that adequate selenium significantly improved the hepatic injury and insulin resistance in HFD mice, and decreased the fat accumulation and the expression of lipogenic genes in PA-induced AML-12 cells. Meanwhile, selenium significantly inhibited the production of reactive oxygen species (ROS), inhibited apoptosis, and restored mitochondrial number and membrane potential in PA- induced AML-12 cells. In addition, selenium can promote selenoproteinP1 (SEPP1) synthesis to regulate the Kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 (NRF2) pathway, so as to defend against hepatocyte oxidative stress. These findings suggest that dietary selenium supplementation can effectively resist hepatic injury and insulin resistance during NAFLD development, and regulate the KEAP1/NRF2 pathway to resist oxidative stress by promoting SEPP1 synthesis.

15.
Dis Markers ; 2022: 5344508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371347

RESUMO

Purpose: Congenital hydrocephalus is one of the most common birth defects worldwide. Exosomal microRNAs (miRNAs) in body fluids have been implicated in many diseases. However, their involvement in cerebrospinal fluid from congenital hydrocephalus is not well understood. This study is aimed at investigating the role of dysregulated exosomal miRNAs in congenital hydrocephalus. Methods: We collected cerebrospinal fluid samples from 15 congenital hydrocephalus patients and 21 control subjects. We used miRNA sequencing to generate exosomal miRNA expression profiles in three pairs of samples. We identified 31 differentially expressed exosomal miRNAs in congenital hydrocephalus and predicted their target mRNAs. Results: Three microRNAs (hsa-miR-130b-3p, hsa-miR-501-5p, and hsa-miR-2113) were selected according to their fold changes and the function of their target mRNAs, and only hsa-miR-130b-3p and hsa-miR-501-5p were confirmed their expression levels in all samples. Moreover, upregulated hsa-miR-130b-3p might mediate the downregulation of the phosphatase and tensin homolog gene (PTEN), which has been associated with hydrocephalus, via binding to its 3'-untranslated region by dual-luciferase reporter assay. Conclusion: This study implicates that abnormally expressed exosomal miRNAs in cerebrospinal fluid may be involved in the pathomechanism of congenital hydrocephalus.


Assuntos
Hidrocefalia , MicroRNAs , Regulação para Baixo , Humanos , Hidrocefalia/genética , MicroRNAs/genética
16.
Chin Herb Med ; 14(2): 273-282, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36117665

RESUMO

Objective: Nonalcoholic fatty liver disease (NAFLD) has become a common chronic liver disease that is harmful to human health. Moreover, there is currently no FDA-approved first-line drug for the treatment of nonalcoholic steatohepatitis (NASH) or NAFLD. Traditional Chinese medicine (TCM) is widely used to ameliorate liver diseases, such as the traditional ancient recipe called Three Flower Tea (TFT), which consists of double rose (Rosa rugosa), white chrysanthemum (Chrysanthemum morifolium), and Daidaihua (Citrus aurantium). However, the mechanisms of the action of TFT are not clear. Therefore, this study aimed to elucidate the mechanisms of TFT against NAFLD in high-fat diet (HFD)-induced rats. Methods: This study utilized bioinformatics and network pharmacology to establish the active and potential ingredient-target networks of TFT. Furthermore, a protein-protein interaction (PPI) network was constructed, and enrichment analysis was performed to determine the key targets of TFT against NAFLD. Furthermore, an animal experiment was conducted to evaluate the therapeutic effect and confirm the key targets of TFT against NAFLD. Results: A total of 576 NAFLD-related genes were searched in GeneCards, and under the screening criteria of oral bioavailability (OB) ≥30% and drug-likeness (DL) ≥0.18, a total of 19 active ingredients and 210 targets were identified in TFT. Network pharmacology analysis suggested that 55 matching targets in PPIs were closely associated with roles for NAFLD treatment. Through the evaluation of network topology parameters, four key central genes, PPARγ, SREBP, AKT, and RELA, were identified. Furthermore, animal experiments indicated that TFT could reduce plasma lipid profiles, hepatic lipid profiles and hepatic fat accumulation, improve liver function, suppress inflammatory factors, and reduce oxidative stress. Through immunoblotting and immunofluorescence analysis, PPARγ, SREBP, AKT, and RELA were confirmed as targets of TFT in HFD-induced rats. Conclusion: In summary, our results indicate that TFT can prevent and treat NAFLD via multiple targets, including lipid accumulation, antioxidation, insulin sensitivity, and inflammation.

17.
Micromachines (Basel) ; 13(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144001

RESUMO

The centrifugal electrostatic blowing process proposed in this paper solves the difficult continuous and stable deposition problem in the traditional centrifugal electrostatic spinning process. By establishing a flight deposition model of the centrifugal electrostatic spraying process, CFD is used to simulate and analyze the electrohydrodynamic effect of centrifugal jets, and the driving mechanism is explored. Subsequently, MATLAB is used to obtain the optimal solution conditions, and finally, the establishment of a two-dimensional flight trajectory model is completed and experimentally verified. In addition, the deposition model of the jet is established to clarify the flight trajectory under the multi-field coupling, the stable draft area of the jet is found according to this, and the optimal drafting station is clarified. This research provides new ideas and references for the exploration of the deposition mechanism of the centrifugal electrostatic blowing and electrostatic spinning process.

18.
Front Pharmacol ; 12: 680081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290609

RESUMO

Metabolism-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, and the use of traditional Chinese medicines (TCMs) to treat this disease has attracted increasing attention. The Qing Gan San (QGS) formula comprises Polygonatum sibiricum, the peel of Citrus reticulata Blanco, the leaves of Morus alba L, Cichorium intybus, Glycyrrhiza uralensis Fisch, and Cirsium setosum. The present study aimed to uncover the anti-hyperlipidaemic effects, hepatic fat accumulation-lowering effects and mechanisms of QGS in high-fat diet-induced MAFLD rats. QGS significantly reduced the levels of total cholesterol and triglycerides in both serum and liver tissue and partially protected hepatic function. Additionally, QGS significantly ameliorated hepatic lipid accumulation with histopathology observation, as demonstrated by H&E and oil red O staining. RNA sequencing was used to further investigate the key genes involved in the development and treatment of MAFLD. Hierarchical clustering analysis showed that the gene expression profiles in rats with MAFLD were reversed to normal after QGS treatment. QGS had 222 potential therapeutic targets associated with MAFLD. Enrichment analysis among these targets revealed that QGS affected biological functions/pathways such as the regulation of lipid metabolic processes (GO: 0019216) and the non-alcoholic fatty liver disease pathway (hsa04932), and identified Srebp-1 as a key regulator in the synthesis of cholesterol and triglycerides. Subsequently, both immunofluorescence and Western blot analyses demonstrated that QGS suppressed the transfer of Srebp-1 to the nucleus from the cytoplasm, suggesting that the activation of Srebp-1 was inhibited. Our study reveals the effects and mechanisms of QGS in the treatment of MAFLD and provides insights and prospects to further explore the pathogenesis of MAFLD and TCM therapies.

19.
Front Cell Dev Biol ; 9: 662780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268302

RESUMO

Non-syndromic cleft lip and palate (NSCLP) is one of the most common congenital malformations with multifactorial etiology. Although long non-coding RNAs (lncRNAs) have been implicated in the development of lip and palate, their roles in NSCLP are not fully elucidated. This study aimed to investigate how dysregulated lncRNAs contribute to NSCLP. Using lncRNA sequencing, bioinformatics analysis, and clinical tissue sample detection, we identified that lncRNA ZFAS1 was significantly upregulated in NSCLP. The upregulation of ZFAS1 mediated by SP1 transcription factor (SP1) inhibited expression levels of Wnt family member 4 (WNT4) through the binding with CCCTC-binding factor (CTCF), subsequently inactivating the WNT/ß-catenin signaling pathway, which has been reported to play a significant role on the development of lip and palate. Moreover, in vitro, the overexpression of ZFAS1 inhibited cell proliferation and migration in human oral keratinocytes and human umbilical cord mesenchymal stem cells (HUC-MSCs) and also repressed chondrogenic differentiation of HUC-MSCs. In vivo, ZFAS1 suppressed cell proliferation and numbers of chondrocyte in the zebrafish ethmoid plate. In summary, these results indicated that ZFAS1 may be involved in NSCLP by affecting cell proliferation, migration, and chondrogenic differentiation through inactivating the WNT/ß-catenin signaling pathway.

20.
Micromachines (Basel) ; 11(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028701

RESUMO

In this paper, we synergistically combine electrohydrodynamic (EHD) printing and replica molding for the fabrication of microlenses. Glycerol solution microdroplets was sprayed onto the ITO glass to form liquid mold by an EHD printing process. The liquid mold is used as a master to fabricate a polydimethylsiloxane (PDMS) mold. Finally, the desired micro-optical device can be fabricated on any substrate using a PDMS soft lithography mold. We demonstrate our strategy by generating microlenses of photocurable polymers and by characterizing their optical properties. It is a new method to rapidly and cost-effectively fabricate molds with small diameters by exploiting the advantages of EHD printing, while maintaining the parallel nature of soft-lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA