Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Angew Chem Int Ed Engl ; 63(11): e202320144, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38243691

RESUMO

The exploration of annulene's conformation, electronic properties and aromaticity has generated enduring interest over the years, yet it continues to present formidable challenges for annulenes with more than ten carbon atoms. In this study, we present the synthesis of a stable [10]cyclo-para-phenylmethine derivative (1), which bears a resemblance to [10]annulene. 1 can be readily oxidized into its respective cations, wherein electrons are effectively delocalized along the backbone, resulting in different conformations and aromaticity. Both 1 and its tetracation (14+ ⋅ 4SbF6 - ) exhibit a nearly planar conformation with a rectangular shape, akin to the E,Z,E,Z,Z-[10]annulene. In contrast, the radical cation (1⋅+ ⋅ SbCl6 - ) possesses a doubly twisted Hückel topology. Furthermore, the dication (12+ ⋅ 2SbCl6 - ) displays conformational flexibility in solution and crystalizes with the simultaneous presence of Möbius-twisted (1a2+ ⋅ 2SbCl6 - ) and Hückel-planar (1b2+ ⋅ 2SbCl6 - ) isomers in its unit cell. Detailed experimental measurements and theoretical calculations reveal that: (1) 1 demonstrates localized aromaticity with an alternating benzenoid/quinoid structure; (2) 1a2+ ⋅ 2SbCl6 - and 1b2+ ⋅ 2SbCl6 - with 48π electrons are weakly Möbius aromatic and Hückel antiaromatic, respectively; (3) 14+ ⋅ 4SbF6 - exhibits Hückel aromaticity (46π) and open-shell diradical character.

2.
Angew Chem Int Ed Engl ; : e202407990, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958027

RESUMO

All-benzenoid polycyclic aromatic hydrocarbons or macrocycles usually display localized aromaticity. On the other hand, incorporation of quinoidal units into the skeleton could lead to effective electron delocalization and global (anti)aromaticity. In this work, fully π-conjugated macrocycle 1 and bismacrocycle 2 containing both para-quinodimethane and triphenylamine units are efficiently synthesized mainly through intermolecular Friedel-Crafts alkylation reaction. They can be considered as a tetraazasuperbenzene and a hexaazasupernaphthalene, respectively, due to their similar geometry and electronic structures to the benzene and naphthalene. X-ray crystallographic analyses reveal a largely planar geometry for both 1 and 2 and variable-temperature NMR measurements disclose slow dynamic processes owing to restricted ring flipping of the phenyl rings. 1 and 2 can be easily oxidized into higher-oxidation-state species. NMR and theoretical calculations indicate that 12+ and 14+ show global anti-aromaticity and aromaticity, respectively, with a dominant 32π and 30π conjugation pathway, while for the bismacrocycle 2, its dication 22+, tetracation 24+ and hexacation 26+exhibit global aromaticity, antiaromaticity, and aromaticity with a 54π, 52π and 50π conjugation pathway along the outermost backbone, respectively.

3.
Angew Chem Int Ed Engl ; 63(18): e202403149, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421194

RESUMO

Expanded azahelicenes, as heteroanalogues of helically chiral helicenes, hold significant potential for chiroptical materials. Nevertheless, their investigation and research have remained largely unexplored. Herein, we present the facile synthesis of a series of expanded azahelicenes NHn (n=1-5) consisting of 11, 19, 27, 35, and 43 fused rings, mainly by Suzuki coupling followed by Bi(OTf)3-mediated cyclization of vinyl ethers. The structures of NH2, NH3 and NH4 were confirmed through X-ray crystallography analysis, and their (P)- and (M)- enantiomers were also isolated with chiral high performance liquid chromatography. The enantiomers exhibit large absorption (abs) and luminescence (lum) dissymmetry factors, with |gabs|max=0.044; |glum|max=0.003 for NH2, |gabs|max=0.048; |glum|=0.014 for NH3, and |gabs|max=0.043; |glum|max=0.021 for NH4, which are superior to their respective all-carbon analogues.

4.
Angew Chem Int Ed Engl ; 62(18): e202218090, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826385

RESUMO

Expanded helicenes are expected to show enhanced chiroptical properties as compared to the classical helicenes but the synthesis is very challenging. Herein, we report the facile synthesis of a series of expanded helicenes Hn (n=1-4) containing 11, 19, 27 and 35 cata-fused benzene rings through Suzuki coupling-based oligomerization followed by Bi(OTf)3 -mediated regioselective cyclization of vinyl ethers. Their structures were determined by X-ray crystallographic analysis. Enantiopure H2, H3, and H4 can be isolated by chiral HPLC and they all exhibit strong chiroptical responses with high absorption dissymmetry factor (|gabs |) values (0.020 for H2, 0.021 for H3, and 0.021-0.024 for H4).

5.
J Am Chem Soc ; 144(50): 23158-23167, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475662

RESUMO

Although aromaticity in 2D π-conjugated monocyclic and polycyclic molecules has been intensively studied, aromaticity in 3D fully π-conjugated molecular cages remains largely unexplored mainly due to the synthetic challenges. Herein, we report the facile synthesis of a π-conjugated molecular cage (1) containing four dimethylmethylene-bridged triphenylamine (DTPA) units via platinum-mediated assembly of four molecules of a pinacol borate trisubstituted DTPA derivative, followed by reductive elimination. 1 has an open-cage structure, consisting of two isomeric trimers in trans- and cis-configurations, and an additional macrocycle across four DTPA units. Accordingly, the trans- (2) and cis- (3) macrocyclic trimers were also synthesized for comparison. 1-3 can be facilely oxidized into their respective cations in which electrons are effectively delocalized at two or three dimensions. The detailed experimental measurements and theoretical calculations reveal that (1) the neutral cage 1 shows localized aromaticity in individual benzene rings; (2) the dication 12+·2SbF6- displays bicyclic (anti)aromaticity with one macrocycle being aromatic (38π) and another macrocycle being antiaromatic (28π); on the other hand, the dications of the model compounds 2 and 3 are globally antiaromatic and nonaromatic, respectively; (3) the tetracation 14+·4SbF6- exhibits dominant 2D Hückel antiaromaticity in one of the macrocycles (36π). In addition, 12+·2SbF6-, 14+·4SbF6-, and 22+·2SbF6- possess open-shell singlet ground state with significant diradical character, while 32+·2SbF6- adopts a triplet ground state to release strain.

6.
J Am Chem Soc ; 144(5): 2095-2100, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099946

RESUMO

The hitherto elusive benzo[c]anthanthrenyl radical derivatives composed of seven fused six-membered rings are synthesized and isolated in the crystalline form, representing a laterally π-extended doublet open-shell graphene fragment compared to the phenalenyl and olympicenyl radical structures. X-ray crystallographic analysis revealed one-dimensional chain stacking with relatively close intermolecular contacts, which is an important precondition for achieving single-component conductors. The magnetic, optical, and redox properties are investigated in the solution phase. In combination with the good stability, such open-shell molecular systems have potentials as functional electronic materials.

7.
Chemistry ; 28(31): e202200687, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319794

RESUMO

The incorporation of organic radicals into coordination polymers was considered as a promising strategy to promote metal-ligand exchange interactions, but there are only a very limited number of stable organic radical-based ligands that can serve well such a purpose. Herein, we report two new tris(2,4,6-trichlorophenyl)methyl (TTM) radical-based ligands L1 and L2 with two and three imidazole substituents, respectively. The imidazole unit serves as a coordination site and it can also stabilize the TTM radical by intramolecular donor-acceptor interaction. Coordination of L1 and L2 with cobalt(II) ions gave the corresponding one- (CoCP-1) and two-dimensional (CoCP-2) coordination polymers, the structures of which were confirmed by X-ray crystallographic analysis. Magnetic measurements and theoretical calculations suggest antiferromagnetic coupling between the paramagnetic cobalt(II) ions and the radical ligands. Our study provides a rational design for stable organic radical-based ligands and further demonstrated the feasibility of a metal-radical approach toward magnetic materials.

8.
Macromol Rapid Commun ; 43(15): e2200170, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35471590

RESUMO

Although considerable efforts have been devoted to novel ionic porous networks (IPNs), the development of them in a scalable manner to tackle the issues in pollutant treatment by adsorption remains an imminent challenge. Herein, inspired by natural spider webs, a knitting copolymerization strategy is proposed to construct analogue triazolium salt-based porous networks (IPN-CSUs). It is not only convenient to incorporate the cationic motifs into the network, but easy to control over the contents of ionic pairs. The as-prepared IPN-CSUs displays a high surface area of 924 m2 g-1 , a large pore volume of 1.27 cm3 g-1 and abundant ionic sites, thereby exhibiting fast adsorption rate and high adsorption capacity towards organic and inorganic pollutants. The kinetics and thermodynamics study reveal that the adsorption followed a pseudo-second-order kinetic model and Langmuir isotherm model correspondingly. Specifically, the maximum adsorption capacity of the IPN-CSUs is as high as 1.82 mg mg- 1 for permanganate ions and up to 0.54 mg mg-1 for methyl orange, which stands out among the previously reported porous adsorbents so far. It is expected that the strategy reported herein can be extended to the development of other potential efficient adsorbents in water purifications.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Ânions , Cinética , Porosidade , Sais
9.
Angew Chem Int Ed Engl ; 61(9): e202115571, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34958520

RESUMO

Global aromaticity in 3D π-conjugated molecular cages remains largely unexplored. Herein, we report the facile synthesis of a fully conjugated molecular cage (1) containing two bridged triphenylamine units and three quinoidal bithiophene arms. X-ray crystallographic analysis, NMR/ESR measurements and theoretical calculations reveal that: 1) its dication (12+ ) has an open-shell singlet ground state and is 3D globally aromatic, with individual macrocycles being 2D Hückel aromatic; 2) its tetracation (14+ ) has a triplet ground state and is also 3D globally aromatic, with individual macrocycles being 2D Baird aromatic; and 3) its hexacation (16+ ) has a closed-shell nature and shows local aromaticity. The study demonstrated a close relationship between 2D Hückel/Baird aromaticity and 3D global π-aromaticity.

10.
Angew Chem Int Ed Engl ; 61(40): e202210386, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36000462

RESUMO

Synthesis of triangulene and its derivatives is challenging due to their intrinsic high spin nature. Herein, we report solution-phase synthesis and isolation of a nitrogen-doped triangulene (i.e., aza-triangulene) (NT) and its cation (NT+ ) in single-crystal form. Notably, the cation NT+ can be regarded as an isoelectronic structure of the corresponding all-carbon triangulene. Both NT and NT+ show reasonable stability due to kinetic blocking by bulky and electron-withdrawing aryl substituents, and intramolecular donor-acceptor interaction. Bond length analysis, magnetic measurements and theoretical calculations reveal that the neutral NT has a doublet ground state with a zwitterionic character, while the cation NT+ exhibits a triplet ground state with a singlet-triplet energy gap of +0.84 kcal mol-1 . This study provides a rational strategy to access high-spin systems by heteroatom doping of pure π-conjugated polycyclic hydrocarbons.

11.
Angew Chem Int Ed Engl ; 61(43): e202210697, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36008354

RESUMO

An [8]cyclo-para-phenylmethine derivative ([8]CPPM-Mes) was synthesized. X-ray analysis revealed a tub-shaped geometry similar to the cyclooctatetraene, with alternating benzenoid/quinoid structure. Variable-temperature NMR measurements disclosed a slow valence tautomerization process with an interconversion energy barrier of about 11.7 kcal mol-1 at coalescence temperature (273 K), and two more lower-barrier dynamic processes involving flipping of the 1,4-phenyl rings on the backbone and rotation of the mesityl substituents. Its dication ([8]CPPM-Mes2+ ) adopts a bowl-like geometry with a smaller depth of the cavity, and a slow bowl inversion process was observed by dynamic NMR. The bond lengths of the benzenoid/quinoid rings are more averaged via electron delocalization and the molecule shows global aromaticity, which was further validated by NMR and theoretical analysis. [8]CPPM-Mes2+ exhibits open-shell diradical character with a small singlet-triplet energy gap (-1.8 kcal mol-1 ).

12.
J Am Chem Soc ; 143(35): 14314-14321, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34455792

RESUMO

The synthesis of molecular cages consisting of fully fused, π-conjugated rings is rare due to synthetic challenges including preorganization, large strain, and poor solubility. Herein, we report such an example in which a tris-2-aminobenzophenone precursor undergoes acid-mediated self-condensation to form a truncated tetrahedron, one of the 13 Archimedean solids. Formation of eight-membered [1,5]diazocine rings provides preorganization and releases the strain while still maintains weak π-conjugation of the backbone. Thorough characterizations were performed by X-ray, NMR, and UV-vis analysis, assisted by theoretical calculations. The cage exhibits a rigid backbone structure with a well-defined cavity that confines a magnetically shielded environment. The solvent molecule, o-dichlorobenzene, is precisely encapsulated in the cavity at a 1:1 ratio with multiple π···π, C-H···π, and halogen···π interactions with the cage skeleton, implying its template effect for the cage closing reaction. Our synthetic strategy opens the opportunity to access more complex, fully fused, three-dimensional π-conjugated cages.

13.
Small ; 17(44): e2102689, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553830

RESUMO

Recently, the application of metal-organic frameworks (MOFs) in thermal energy storage has attracted increasing research interests. MOF-ammonia working pairs have been proposed for controlling/sensing the air quality, while no work has yet been reported on the immense potential of MOFs for thermal energy storage up till now. Herein, the feasibility of thermal energy storage using seven MOF-ammonia working pairs is experimentally assessed. From ammonia sorption stability and sorption thermodynamics results, it is found that MIL-101(Cr) exhibits both high ammonia sorption stability and the largest sorption capacity of ≈0.76 g g-1 . Compared with MIL-101(Cr)-water working pair, MIL-101(Cr)-ammonia working pair improves the sorption capacity by over three times with evaporation temperature lower than 8.4 °C. Due to stable ammonia sorption stability and negligible hysteresis, MIL-101(Cr) and ZIF-8(Zn) are tested at condensation/evaporation temperature of 30 °C/10 °C. The thermal energy storage density (reaching over 1200 kJ kg-1 ) and coefficient of performance of MIL-101(Cr)-based system are both higher than ZIF-8(Zn)-based one due to larger average isosteric enthalpy and cycle sorption capacity. This experimental work paves the way for developing the high efficient and stable thermal energy storage system with MOF-ammonia working pairs especially for critical conditions with low evaporation temperature and high condensation temperature.

14.
Can J Physiol Pharmacol ; 99(8): 775-785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33290156

RESUMO

Theobromine, a methylxanthine present in cocoa, has been shown to possess many beneficial pharmacological properties such as anti-oxidative stress, anti-inflammatory property, and anti-microbial activity. In this study, we investigated the effects of theobromine on nonalcoholic fatty liver disease (NAFLD) and the possible underlying mechanisms in vivo and in vitro. The results showed that theobromine reduced body weight and fat mass and improved dyslipidemia. Theobromine mitigated liver injury and significantly reduced hepatic triglyceride level in mice with obesity. Histological examinations also showed hepatic steatosis was alleviated after theobromine treatment. Furthermore, theobromine reversed the elevated mRNA and protein expression of SREBP-1c, FASN, CD36, FABP4, and the suppressed expression of PPARα and CPT1a in the liver of mice with obesity, which were responsible for lipogenesis, fatty acid uptake, and fatty acid oxidation respectively. In vitro, theobromine also downregulated SREBP-1c, FASN, CD36, FABP4 and upregulated PPARα and CPT1a mRNA and protein levels in hepatocytes in a dose-dependent manner, while these changes were reversed by L-leucine, a mammalian target of rapamycin (mTOR) agonist. The present study demonstrated that theobromine improved NAFLD by inhibiting lipogenesis and fatty acid uptake and promoting fatty acid oxidation in the liver and hepatocytes, which might be associated with its suppression of mTOR signaling pathway. Novelty: Theobromine protects against high-fat diet - induced NAFLD. Theobromine inhibits lipogenesis and fatty acid uptake and promotes fatty acid oxidation in the liver and hepatocytes via inhibiting mTOR signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Lipogênese , Masculino , Camundongos
15.
Angew Chem Int Ed Engl ; 60(48): 25323-25327, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34562050

RESUMO

Synthesis of π-conjugated crystalline two-dimensional (2D) polymers remains largely unexplored due to limited synthetic methodology. Herein, we report the preparation of a 1,6-anthrazoline (AZ)-linked crystalline 2D polymer AZP via acid mediated Friedländer synthesis. The feasibility was examined first by two model reactions, followed by synthesis of three AZ-based macrocycles MCn (n=5-7), in which hexagonal MC6 was isolated as the major product. The favorable macrocycle formation could be largely attributed to the dynamic feature of Friedländer synthesis, which involves both imine condensation and aldol condensation. The structure and crystallinity of AZP were confirmed by experiments and simulation. The skeletons of the macrocycles and polymer consist of all-sp2 hybridized C/N atoms and are thus π-conjugated and electro-active. Our studies provide a rational way to access kinetically stable 2D crystalline polymers by combination of different dynamic covalent chemistries.

16.
Angew Chem Int Ed Engl ; 60(32): 17654-17663, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34002913

RESUMO

A planar dibenzo-peri-hexacene derivative (2) was synthesized via FeCl3 -mediated Scholl reaction from a cyclopenta-fused perylene (CP) based polyphenylene precursor (1). However, an unexpected octagon-containing, negatively curved molecule (3) was obtained in nearly quantitative yield when 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and methanesulfonic acid (MeSO3 H) were used. Similar results were observed when two smaller-sized precursors containing one (4) or two CP units (5) were tested. X-ray crystallographic analysis also revealed that there is no close π-π stacking between neighboring π-conjugated skeletons. DFT calculations suggest a radical cation mechanism in the presence of FeCl3 while an arenium ion pathway for the DDQ/MeSO3 H mediated Scholl reaction, which can well explain the selective formation of hexagons and octagons under different conditions. The obtained compounds showed tunable optical and electrochemical properties.

17.
Angew Chem Int Ed Engl ; 60(18): 10326-10333, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33565194

RESUMO

A series of fused quinoidal dithiophene-based double and triple helicenes (1-M, 2-M, 2-M-Cl, 3-M, 3-M-Cl) were synthesized by intramolecular radical-radical coupling followed by oxidative dehydrogenation reaction. These helical molecules show dynamic interconversion of enantiomers in solution as revealed by variable-temperature NMR measurements, and the energy barriers are correlated to the substituents and topological structures. Notably, dynamic high performance liquid chromatography was used to quantitatively investigate the room-temperature racemization process between the (P,P,M)- and (P,M,M)- enantiomers of the triple helical 3-M-Cl, which gave an interconversion energy barrier in consistent with density functional theory calculations. Their optical and electrochemical properties are dependent on the fusion mode. Our studies provide both new synthetic strategy and new dynamic analytical method for helicenes with unique electronic structure.

18.
J Am Chem Soc ; 142(29): 12730-12742, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589415

RESUMO

A three-dimensional π-conjugated polyradicaloid molecular cage c-Ph14, consisting of three Chichibabin's hydrocarbon motifs connected by two benzene-1,3,5-triyl bridgeheads, was synthesized. Compared with its linear model compound l-Ph4, the prism-like c-Ph14 has a more rigid structure, which shows significant impact on the molecular dynamics, stability, and electronic properties. A higher rotation energy barrier for the quinoidal biphenyl units was determined in c-Ph14 (15.64 kcal/mol) than that of l-Ph4 (11.40 kcal/mol) according to variable-temperature NMR measurements, leading to improved stability, a smaller diradical character, and an increased singlet-triplet energy gap. The pressure-dependent Raman spectroscopic studies on the rigid cage c-Ph14 revealed a quinoidal-to-aromatic transformation along the biphenyl bridges. In addition, the ellipsoidal cavity in the cage allowed selective encapsulation of fullerene C70 over C60, with an associate constant of about 1.43 × 104 M-1. Moreover, c-Ph14 and l-Ph4 exhibited similar redox behavior and their cationic species (c-Ph146+ and l-Ph42+) were obtained by chemical oxidation, and the structures were identified by X-ray crystallographic analysis. The biphenyl unit showed a twisted conformation in l-Ph42+ and remained coplanarity in c-Ph146+. Notably, molecules of c-Ph146+ form a one-dimensional columnar structure via close π-π stacking between the bridgeheads.

19.
Nanotechnology ; 31(14): 145713, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31860878

RESUMO

Seed-catalysed growth has been proved to be an ideal method to selectively tune the crystal structure of III-V nanowires along its growth axis. However, few results on relevant nitride NWs have been reported. In this study, we demonstrate the growth of epitaxial kinked wurtzite (WZ)/zinc-blende (ZB) heterostructure GaN NW arrays under the oxygen rich condition using hydride vapour-liquid-solid vapour phase epitaxy (VLS-HVPE). The typical GaN crystal includes WZ and ZB phases throughout the whole NW structure. A detailed structural analysis indicates that a stacking faults free zone was occasionally observed near the NW tips and in the relatively long kinked 〈11-23〉 directions segments (>200 nm). Furthermore, some NWs (<5%) develop phase boundaries, resulting in kinking and crystal phase evolution. A layer-by-layer growth mode was proposed to explain the crystal phase evolution along the phase boundaries. This study provides new insights into the controlled growth of wurtzite (WZ)/zinc-blende (ZB) heterostructure GaN NW.

20.
Angew Chem Int Ed Engl ; 59(19): 7414-7418, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32052906

RESUMO

A soluble and stable core-modified [38]octaphyrin, MC-T8, containing eight thiophene rings was synthesized by Yamamoto coupling followed by oxidative dehydrogenation. X-ray crystallographic analysis revealed a nearly planar backbone, and the molecule is globally aromatic with a dominant 38π conjugation pathway. The dication MC-T82+ is antiaromatic, and the backbone is distorted, with a different orientation of the thiophene rings. The tetracation MC-T84+ becomes aromatic again, with a shallow-bowl-shaped geometry. Both the neutral compound and the dication demonstrated open-shell diradical character with a small singlet-triplet energy gap (-2.70 kcal mol-1 for MC-T8 and -3.78 kcal mol-1 for MC-T82+ ), and they are stable owing to effective spin delocalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA