Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 116: 154890, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37229892

RESUMO

BACKGROUND: Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS: The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS: The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aß via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION: This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , NF-kappa B , Fosfatidilinositol 3-Quinases , Flavonoides/farmacologia , Flavonoides/uso terapêutico
2.
Micromachines (Basel) ; 13(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36144096

RESUMO

Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.

3.
ACS Appl Mater Interfaces ; 14(22): 25126-25134, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608168

RESUMO

Liposomal spherical nucleic acids possess a high density of nucleic acids, e.g., DNA, on a liposomal core. There are two approaches to conjugate DNA onto the zwitterionic liposomes, i.e., covalent and noncovalent conjugation, otherwise using cationic liposomes. However, complex and expensive DNA chemical modification methods need to seek a novel and easy-operating approach to decorating DNA onto liposomes. Inspired by the nanoparticle solution as nanoglues for gels and biological tissues, we use MnO2 nanosheets to "glue" DNA onto liposomes without DNA modification. In tumor cells with a high glutathione concentration, MnO2-based nanoglues are degraded, generating water-soluble Mn2+ ions, further "unglue" DNA (i.e., DNAzyme), and liposomes. Using the intelligent liposomal nanoglue (DNAzyme/MnO2/Lip) combining glutathione-sensitive MnO2 nanosheets, gene silencing agent DNAzyme, and photosensitizer Chlorin e6 (Ce6) in liposomes, effective photo-gene therapy was demonstrated.


Assuntos
Clorofilídeos , DNA Catalítico , DNA , Terapia Genética , Glutationa/metabolismo , Lipossomos , Compostos de Manganês/farmacologia , Óxidos
4.
Materials (Basel) ; 13(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266399

RESUMO

pH sensors with low-power and strong anti-interference are extremely important for industrial online real-time detection. Herein, a narrow channel pH sensor based on Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with package integrated Polydimethylsiloxane (PDMS) microchannels is proposed. The fabricated device has shown potential advantages in improving stability and reducing power consumption in response to pH changes of the solution. The performance of the pH sensor was demonstrated where the preliminary results showed an ultra-low power (<5.0 µW) at VDS = 1.0 V. Meanwhile, the sensitivity was 0.06 µA/V·pH in the range of pH = 2 to pH = 10, and the resolution of the sensor was 0.1 pH. The improvement in performance of the proposed sensor can be related to the narrow channel and microchannel, which can be attributed to better surface GaxOy in a microchannel with larger H+ and HO- concentration on the sensing surface during the detection process. The low-power sensor with excellent stability can be widely used in various unattended or harsh environments, and it is more conducive to integration and intelligence, which lays the foundation for online monitoring in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA