Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2288: 163-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270011

RESUMO

Brassica carinata, also known as Ethiopian or Abyssinian mustard, is a drought- and heat-tolerant oilseed with great potential as a dedicated industrial feedstock crop for use in biofuel and other bio-based applications. Doubled haploid technology, a system that allows for the rapid development of doubled haploid, completely homozygous plants through microspore embryogenesis, has been applied routinely in both B. carinata breeding and basic research. Here, we present a comprehensive isolated microspore culture protocol detailing the various steps involved in doubled haploid plant production for this species, from growing donor plants over harvesting flower buds and isolating, culturing and inducing microspores to regenerating doubled haploid embryos and plantlets.


Assuntos
Mostardeira/crescimento & desenvolvimento , Mostardeira/genética , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Meios de Cultura/química , Diploide , Haploidia , Homozigoto , Biologia Molecular/métodos , Ploidias , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Técnicas de Cultura de Tecidos
2.
G3 (Bethesda) ; 10(4): 1297-1308, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32046969

RESUMO

Camelina sativa (L.) Crantz an oilseed crop of the Brassicaceae family is gaining attention due to its potential as a source of high value oil for food, feed or fuel. The hexaploid domesticated C. sativa has limited genetic diversity, encouraging the exploration of related species for novel allelic variation for traits of interest. The current study utilized genotyping by sequencing to characterize 193 Camelina accessions belonging to seven different species collected primarily from the Ukrainian-Russian region and Eastern Europe. Population analyses among Camelina accessions with a 2n = 40 karyotype identified three subpopulations, two composed of domesticated C. sativa and one of C. microcarpa species. Winter type Camelina lines were identified as admixtures of C. sativa and C. microcarpa Eighteen genotypes of related C. microcarpa unexpectedly shared only two subgenomes with C. sativa, suggesting a novel or cryptic sub-species of C. microcarpa with 19 haploid chromosomes. One C. microcarpa accession (2n = 26) was found to comprise the first two subgenomes of C. sativa suggesting a tetraploid structure. The defined chromosome series among C. microcarpa germplasm, including the newly designated C. neglecta diploid née C. microcarpa, suggested an evolutionary trajectory for the formation of the C. sativa hexaploid genome and re-defined the underlying subgenome structure of the reference genome.


Assuntos
Brassicaceae , Brassicaceae/genética , Diploide , Genoma de Planta , Genótipo , Cariótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA