Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 34(1): 119-133, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38190633

RESUMO

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space by using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal data sets, we show scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome data set we generated from differentiating mouse embryonic stem cells over time, we show scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Regulação da Expressão Gênica
2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915576

RESUMO

Mapping cellular activities over large areas is crucial for understanding the collective behaviors of multicellular systems. Biomechanical properties, such as cellular traction force, serve as critical regulators of physiological states and molecular configurations. However, existing technologies for mapping large-area biomechanical dynamics are limited by the small field of view and scanning nature. To address this, we propose a novel platform that utilizes a vast number of optical diffractive elements for mapping large-area biomechanical dynamics. This platform achieves a field-of-view of 10.6 mm X 10.6 mm, a three-orders-of-magnitude improvement over traditional traction force microscopy. Transient mechanical waves generated by monolayer neonatal rat ventricular myocytes were captured with high spatiotemporal resolution (130 fps and 20 µm for temporal and spatial resolution, respectively). Furthermore, its label-free nature allows for long-term observations extended to a week, with minimal disruption of cellular functions. Finally, simultaneous measurements of calcium ions concentrations and biomechanical dynamics are demonstrated.

3.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292801

RESUMO

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.

4.
Nat Biotechnol ; 40(5): 703-710, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058621

RESUMO

Single-cell multiomics data continues to grow at an unprecedented pace. Although several methods have demonstrated promising results in integrating several data modalities from the same tissue, the complexity and scale of data compositions present in cell atlases still pose a challenge. Here, we present scJoint, a transfer learning method to integrate atlas-scale, heterogeneous collections of scRNA-seq and scATAC-seq data. scJoint leverages information from annotated scRNA-seq data in a semisupervised framework and uses a neural network to simultaneously train labeled and unlabeled data, allowing label transfer and joint visualization in an integrative framework. Using atlas data as well as multimodal datasets generated with ASAP-seq and CITE-seq, we demonstrate that scJoint is computationally efficient and consistently achieves substantially higher cell-type label accuracy than existing methods while providing meaningful joint visualizations. Thus, scJoint overcomes the heterogeneity of different data modalities to enable a more comprehensive understanding of cellular phenotypes.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Análise de Célula Única , Aprendizado de Máquina , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única/métodos , Sequenciamento do Exoma
5.
J Parallel Distrib Comput ; 122: 36-50, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30872894

RESUMO

Bayesian Sequential Partitioning (BSP) is a statistically effective density estimation method to comprehend the characteristics of a high dimensional data space. The intensive computation of the statistical model and the counting of enormous data have caused serious design challenges for BSP to handle the growing volume of the data. This paper proposes a high performance design of BSP by leveraging a heterogeneous CPU/GPGPU system that consists of a host CPU and a K80 GPGPU. A series of techniques, on both data structures and execution management policies, is implemented to extensively exploit the computation capability of the heterogeneous many-core system and alleviate system bottlenecks. When compared with a parallel design on a high-end CPU, the proposed techniques achieve 48x average runtime enhancement while the maximum speedup can reach 78.76x.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA