Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 221: 115286, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642127

RESUMO

This research aimed to synthesize Chitosan/PVA-blank and a series of Cs/PVA/Sepolite based pH-sensitive membranes using a solution casting process. The synthesized Cs/PVA-blank and Cs/PVA/Sep based membranes were investigated via SEM, FTIR, XRD, and TGA techniques. The SEM results of Cs/PVA/Sep based membrane reveal that the hydrolytic stability and strength were improved in acidic and basic media owing to the incorporation of sepiolite content into chitosan. The characteristic band at 3741 cm-1 in the FTIR spectra of the Cs/PVA/Sep membrane confirmed the successful synthesis. The obtained XRD results showed higher d-spacing for Cs/PVA/Sep membranes as compared to the Cs/PVA-blank membranes owing to the intercalation of chitosan in the interlayer spacing of the sepiolite. The obtained TGA results show higher thermally stability for Cs/PVA/Sep membrane as compared to the Cs/PVA-blank sample due to the interaction of sepiolite content with the chitosan matrix. The obtained hydrolytic and swelling studies revealed that the Cs/PVA/Sep membrane displayed enhanced stability in basic and neutral media while showing minimum swelling in an acidic medium. The water uptake ability was checked for Cs/PVA/-blank and Cs/PVA/Sep-60% membrane and the results exhibited that the Cs/PVA/-blank membrane had maximum water uptake value as compared to the Cs/PVA/Sep-60% membrane. While those with a considerable amount of filler had the lowest water uptake values. As Sepolite content increased, the water uptake % values decreases because of weakness in H-bonding (of hydrophilic groups) and due to intercalation in Sepolite layers during polymer formation.


Assuntos
Quitosana , Polímeros Responsivos a Estímulos , Concentração de Íons de Hidrogênio , Água
2.
Neurocrit Care ; 26(2): 292-300, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27995513

RESUMO

OBJECTIVE: This study was to investigate the role of Nrf2/ARE signaling pathway in the pleiotropic neuroprotective effect of progesterone (PROG) on traumatic brain injury (TBI). METHODS: The Nrf2-knockout (Nrf2-/-) and C57 mice were respectively subjected to a lateral cortical impact injury caused by a free-falling object and randomly divided into three groups: sham-operated, trauma, and trauma + PROG treatment group. The PROG treatment group was given PROG (32 mg/kg of body weight, intraperitoneal injection) immediately after injury. For all groups, a series of brain samples were obtained after trauma at 24 and 72 h, respectively. The cerebral edema was evaluated; the expression of IL-1ß, IL-6, and TNF-α was measured using ELISA array, and the apoptosis index was detected by TUNEL. Flow cytometry was used to detect the intracellular calcium concentration. RESULTS: The water content, the apoptosis index, the levels of inflammatory cytokine, and the intracellular calcium ion were significantly decreased with the PROG treatment in C57 mice with TBI model. However, the effect of PROG on TBI was not found in the Nrf2-/- mouse model of TBI. CONCLUSIONS: PROG reduced cerebral edema, apoptosis, inflammatory reaction, and intracellular calcium ion overload effects after TBI. These beneficial effects were not seen in the Nrf2-/- mouse model of TBI. The results from this study suggested that the Nrf2/ARE signal pathway may be involved in the pleiotropic neuroprotective effect of PROG on TBI.


Assuntos
Elementos de Resposta Antioxidante/fisiologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Progesterona/farmacologia , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Fármacos Neuroprotetores/administração & dosagem , Progesterona/administração & dosagem
3.
Langmuir ; 31(8): 2251-5, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25689447

RESUMO

Green and simple synthesis of high-quality colloidal quantum dots (CQDs) is of great importance and highly anticipated yet not fully implemented. Herein, we achieve the direct conversion of natural minerals to highly uniform, crystalline lead sulfide CQDs based on laser irradiation in liquid. The trivial fragmentation of mineral particles by an intense nanosecond laser was found to create a localized high degree of monomer supersaturation in oleic acid, initiating the LaMer growth of uniform CQDs. The photoconductive device made of these CQDs exhibits a competitive temporal response of photocurrent with those highly sensitive photodetectors based on PbS CQDs reported in the literature. Our synthesis strategy paves the way for the most environmentally friendly and convenient mass production of high-quality uniform CQDs.


Assuntos
Chumbo/química , Pontos Quânticos , Sulfetos/química , Coloides/química , Tamanho da Partícula , Propriedades de Superfície
4.
Nanoscale Adv ; 2(10): 4961-4967, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132896

RESUMO

Graphene quantum dots (GQDs) have shown great promise in a variety of medical applications. Recently, it has been found that GQDs are also beneficial for photodynamic therapy (PDT). However, the findings of GQDs as PDT agents have been controversial in the literature. Herein, we investigate the photoactivity of single-atomic-layered GQDs by examining their ability to generate singlet oxygen (1O2) under irradiation and their effects on the photoactivity of photosensitizers. We demonstrate that the GQDs with lateral sizes of ∼5 or 20 nm are photo-inactive for they cannot generate 1O2 under irradiation of either a 660 nm laser (105 mW cm-2) or a halogen light. Moreover, the GQDs inhibit the photoactivity of two classical photosensitizers, namely, methylene blue and methylene violet. The stronger interaction between the GQDs and the photosensitizer results in greater inhibition of GQDs. Besides, the large-sized GQDs exhibit stronger inhibition than the small-sized GQDs. The inhibitory effect of the GQDs on the photoactivity of photosensitizers is consistent with their photo-cytotoxicity. These results indicate that the single-atomic-layered GQDs are not potential PDT agents, but they may be helpful for photosensitizers by delivering them into the cells. The discrepancy between the current work and the literature is probably associated with the GQDs used.

5.
ACS Omega ; 4(14): 16159-16165, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592136

RESUMO

Graphene quantum dots (GQDs) have shown broad application prospects in the field of photovoltaic devices due to their unique quantum confinement and edge effects. Here, we prepared GQDs by a photon-Fenton reaction as reported in our previous work, which has great advantage in the preparation scale. The photoelectric properties of the inverted hybrid solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61 butyric acid methylester (PCBM):GQDs and P3HT:GQDs with different contents of GQDs as the active layers are demonstrated, as well as their morphology and structure by atomic force microscopy images. Then, the different roles of GQDs played in the ternary (P3HT:PCBM:GQDs) and binary (P3HT:GQDs) hybrid solar cells are studied systematically. The results indicate that the GQDs provide an efficient excition separation interface and charge transport channel for the improvement of hybrid solar cells. The preliminary exploration and elaboration of the role of GQDs in hybrid solar cells will be beneficial to understand the interfacial procedure and improve device performance in the future.

6.
RSC Adv ; 9(33): 18898-18901, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516897

RESUMO

Graphene quantum dots (GQDs) prepared through photo-Fenton reaction of graphene oxide are separated via gel column chromatography. The as-separated GQDs were selectively introduced into the active layer of organic solar cells and achieved an enhancement of power conversion efficiency (PCE).

7.
Nat Commun ; 4: 1695, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591862

RESUMO

Monodisperse colloidal quantum dots with size dispersions <10% are of great importance in realizing functionality manipulation, as well as building advanced devices, and have been normally synthesized via 'bottom-up' colloidal chemistry. Here we report a facile and environmentally friendly 'top-down' strategy towards highly crystalline monodisperse colloidal PbS quantum dots with controllable sizes and narrow dispersions 5.5%<σ<9.1%, based on laser irradiation of a suspension of polydisperse PbS nanocrystals with larger sizes. The colloidal quantum dots demonstrate size-tunable near-infrared photoluminescence, and self-assemble into well-ordered two-dimensional or three-dimensional superlattices due to the small degree of polydispersity and surface capping of 1-dodecanethiol, not only serving as a surfactant but also a sulphur source. The acquisition of monodisperse colloidal PbS quantum dots is ascribed to both the quantum-confinement effect of quantum dots and the size-selective-vaporization effect of the millisecond pulse laser with monochromaticity and low intensity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA