Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Haematol ; 190(1): 52-66, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32037523

RESUMO

The serine synthesis pathway (SSP) is active in multiple cancers. Previous study has shown that bortezomib (BTZ) resistance is associated with an increase in the SSP in multiple myeloma (MM) cells; however, the underlying mechanisms of SSP-induced BTZ resistance remain unclear. In this study, we found that phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in the SSP, was significantly elevated in CD138+ cells derived from patients with relapsed MM. Moreover, high PHGDH conferred inferior survival in MM. We also found that overexpression of PHDGH in MM cells led to increased cell growth, tumour formation, and resistance to BTZ in vitro and in vivo, while inhibition of PHGDH by short hairpin RNA or NCT-503, a specific inhibitor of PHGDH, inhibited cell growth and BTZ resistance in MM cells. Subsequent mechanistic studies demonstrated PHGDH decreased reactive oxygen species (ROS) through increasing reduced glutathione (GSH) synthesis, thereby promoting cell growth and BTZ resistance in MM cells. Furthermore, adding GSH to PHGDH silenced MM cells reversed S phase arrest and BTZ-induced cell death. These findings support a mechanism in which PHGDH promotes proliferation and BTZ resistance through increasing GSH synthesis in MM cells. Therefore, targeting PHGDH is a promising strategy for MM therapy.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Glutationa/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Fosfoglicerato Desidrogenase/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Mieloma Múltiplo/fisiopatologia
2.
Mol Carcinog ; 59(3): 265-280, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31867776

RESUMO

Nasopharyngeal carcinoma (NPC) has the highest rate of metastasis among head and neck cancers, and distant metastasis is the major reason for treatment failure. We have previously shown that high cyclooxygenase-2 (COX-2) expression is associated with a poor prognosis of patients with NPC and inhibits chemotherapy-induced senescence in NPC cells. In this study, we found that COX-2 was upregulated in cancer-associated fibroblasts (CAFs) derived from NPC by RNA-Seq. Furthermore, elevated COX-2 expression in CAF was detected in NPC patients with poor survival and distant metastasis by using immunohistochemistry. Then, we identified that COX-2 is highly expressed in CAF at the distant metastasis site in seven paired NPC patients. High expression of COX-2 and secretion of prostaglandin E2, a major product catalyzed by COX-2 in fibroblasts, promotes migration and invasiveness of NPC cells in vitro. On the contrary, inhibition of COX-2 has the opposite effect in vitro as well as in the COX-2-/- mouse with the lung metastasis model in vivo. Mechanistically, we discovered that COX-2 elevates tumor necrosis factor-α expression in CAF to promote NPC cell migration and invasiveness. Overall, our results identified a novel target in CAF promoting NPC metastasis. Our findings suggested that high expression of COX-2 in CAF may serve as a new prognostic indicator for NPC metastasis and provide the possibility of targeting CAF for treating advanced NPC.


Assuntos
Fibroblastos Associados a Câncer/patologia , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Regulação para Cima
3.
PLoS Negl Trop Dis ; 18(9): e0012439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39235995

RESUMO

BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) is a severe public health problem in Jiangxi province, China. Previous studies reported genetic variants of Orthohantavirus hantanense (Hantaan virus, HTNV) in rodents in this area. However, the relationship between HTNV variants and human infection needs to be confirmed. This study aimed to identify the HTNV variants in patients and to understand the clinical characteristics of HFRS caused by these variants. METHODS: Samples were collected from hospitalized suspected cases of HFRS during the acute phase. HFRS cases were confirmed using quantitative real-time RT-PCR. Peripheral blood mononuclear cells (PBMC) from patients with HFRS were inoculated into Vero-E6 cells for viral isolation. The genomic sequences of HTNV from patients were obtained by amplicon-based next-generation sequencing. A retrospective analysis was conducted on the clinical characteristics of the patients. RESULTS: HTNV RNA was detected in 53 of 183 suspected HFRS patients. Thirteen HTNVs were isolated from 32 PBMCs of HFRS cases. Whole genome sequences of 14 HTNVs were obtained, including 13 isolates in cell culture from 13 patients, and one from plasma of the fatal case which was not isolated successfully in cell culture. Genetic analysis revealed that the HTNV sequence from the 14 patients showed significant variations in nucleotide and amino acid to the HTNV strains found in other areas. Fever (100%, 53/53), thrombocytopenia (100%, 53/53), increased serum aspartate aminotransferase (100%, 53/53), and increased lactate dehydrogenase (96.2%, 51/53) were the most common characteristics. Severe acute kidney injury was observed in 13.2% (7/53) of cases. Clinical symptoms, such as pain, petechiae, and gastrointestinal or respiratory symptoms were uncommon. CONCLUSION: The HTNV genetic variants cause human infections in Jiangxi. The clinical symptoms of HFRS caused by the HTNV genetic variant during the acute phase are atypical. In addition to renal dysfunction, attention should be paid to the common liver injuries caused by these genetic variants.


Assuntos
Variação Genética , Febre Hemorrágica com Síndrome Renal , Humanos , Febre Hemorrágica com Síndrome Renal/virologia , Febre Hemorrágica com Síndrome Renal/epidemiologia , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Chlorocebus aethiops , Animais , Células Vero , Filogenia , RNA Viral/genética , Adulto Jovem , Estudos Retrospectivos , Leucócitos Mononucleares/virologia , Idoso , Genoma Viral , Orthohantavírus/genética , Orthohantavírus/isolamento & purificação , Orthohantavírus/classificação , Adolescente , Vírus Hantaan/genética , Vírus Hantaan/isolamento & purificação , Vírus Hantaan/classificação
4.
Adv Sci (Weinh) ; 9(9): e2104491, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088582

RESUMO

It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.


Assuntos
Mieloma Múltiplo , Bortezomib/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/uso terapêutico
5.
Oncogenesis ; 9(3): 31, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139666

RESUMO

Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Although the use of bortezomib (BTZ) significantly improves MM therapy, intrinsic and acquired drug resistance to BTZ remains a major clinical problem. In this study, we find that Cdc37, a key co-chaperone of Hsp90, is downregulated in relapsed MM patients, especially after BTZ treatment, suggesting a link between Cdc37 and BTZ resistance. Suppression of Cdc37 or inhibition of Cdc37/Hsp90 association induces plasma cell dedifferentiation, quiescence of MM cells, and BTZ resistance in MM. Furthermore, we discover that Cdc37 expression correlates positively with Xbp1s, a critical transcription factor for plasma cell differentiation in MM samples. Depletion/inhibition of Cdc37 downregulates Xbp1s, while overexpression of Xbp1s in MM cell lines partially rescues plasma immaturation and BTZ resistance. It is suggested that Xbp1s may act as a key downstream effector of Cdc37. Experiments with a mouse model also demonstrate that Cdc37 inhibition promotes plasma cell immaturation, confers BTZ resistance, and increases MM progression in vivo. Together, we identify a critical factor and a new signaling mechanism that regulate plasma cell immaturation and BTZ resistance in MM cells. Our findings may constitute a novel strategy that overcomes BTZ resistance in MM therapy.

6.
Mol Oncol ; 14(4): 763-778, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31955515

RESUMO

NEK2 is associated with drug resistance in multiple cancers. Our previous studies indicated that high NEK2 confers inferior survival in multiple myeloma (MM); thus, a better understanding of the mechanisms by which NEK2 induces drug resistance in MM is required. In this study, we discovered that NEK2 enhances MM cell autophagy, and a combination of autophagy inhibitor chloroquine (CQ) and chemotherapeutic bortezomib (BTZ) significantly prevents NEK2-induced drug resistance in MM cells. Interestingly, NEK2 was found to bind and stabilize Beclin-1 protein but did not affect its mRNA expression and phosphorylation. Moreover, autophagy enhanced by NEK2 was significantly prevented by knockdown of Beclin-1 in MM cells, suggesting that Beclin-1 mediates NEK2-induced autophagy. Further studies demonstrated that Beclin-1 ubiquitination is decreased through NEK2 interaction with USP7. Importantly, knockdown of Beclin-1 sensitized NEK2-overexpressing MM cells to BTZ in vitro and in vivo. In conclusion, we identify a novel mechanism whereby autophagy is activated by the complex of NEK2/USP7/Beclin-1 in MM cells. Targeting the autophagy signaling pathway may provide a promising therapeutic strategy to overcome NEK2-induced drug resistance in MM.


Assuntos
Antineoplásicos/farmacologia , Proteína Beclina-1/metabolismo , Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo/tratamento farmacológico , Quinases Relacionadas a NIMA/metabolismo , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Estabilidade Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA