RESUMO
The in-situ health condition of carbon fiber reinforced polymer (CFRP) reinforced structures has become an important topic, which can reflect the structural performance of the retrofitted structures and judge the design theory. An optical fiber-based structural health monitoring technique is thus suggested. To check the effectiveness of the proposed method, experimental testing on smart CFRP reinforced steel beams under impact action has been performed, and the dynamic response of the structure has been measured by the packaged FBG sensors attached to the surface of the beam and the FBG sensors inserted in the CFRP plates. Time and frequency domain analysis has been conducted to check the structural feature of the structures and the performance of the installed sensors. Results indicate that the packaged Fiber Bragg Grating (FBG) sensors show better sensing performance than the bare FBG sensors in perceiving the impact response of the beam. The sensors embedded in the CFRP plate show good measurement accuracy in sensing the external excitation and can replace the surface-attached FBG sensors. The dynamic performance of the reinforced structures subjected to the impact action can be straightforwardly read from the signals of FBG sensors. The larger impact energies bring about stronger impact signals.
RESUMO
AIM: To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). METHODS: Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dose toxin (ADLT; n = 20, 10 µg), and a model + high-dose toxin (ADHT; n = 20, 20 µg) group. Mice weight, tumor formation and pathology were analyzed. Immunohistochemistry determined Ki-67 and Caspase-3 expression in normal and tumor tissues of colorectal mucosa. RESULTS: Recombinant BFT-2 was successfully obtained, along with its biological activity. The most obvious weight loss occurred in the AD group compared with the ADLT group (21.82 ± 0.68 vs 23.23 ± 0.91, P < 0.05) and the ADHT group (21.82 ± 0.68 vs 23.57 ± 1.06, P < 0.05). More tumors were found in the AD group than in the ADLT and ADHT groups (19.75 ± 3.30 vs 6.50 ± 1.73, P < 0.05; 19.75 ± 3.30 vs 6.00 ± 2.16, P < 0.05). Pathology showed that 12 mice had adenocarcinoma and 6 cases had adenoma in the AD group. Five mice had adenocarcinoma and 15 had adenoma in the ADLT group. Four mice had adenocarcinoma and 16 had adenoma in the ADHT group. The incidence of colorectal adenocarcinoma in both the ADHT group and the ADHT group was reduced compared to that in the AD group (P < 0.05, P < 0.05). The positive rate of Ki-67 in the ADLT group and the ADHT group was 50% and 40%, respectively, both of which were lower than that found in the AD group (94.44%, P < 0.05, P < 0.05). Caspase-3 expression in the ADLT group and the ADHT group was 45% and 55%, both of which were higher than that found in the BC group (16.67%, P < 0.05, P < 0.05). CONCLUSION: Oral administration with lower-dose biologically active recombinant BFT-2 inhibited colorectal tumorigenesis in mice.