Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1351, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769481

RESUMO

BACKGROUND: Adolescent weight problems have become a growing public health concern, making early prediction of non-normal weight status crucial for effective prevention. However, few temporal prediction tools for adolescent four weight status have been developed. This study aimed to predict the short- and long-term weight status of Hong Kong adolescents and assess the importance of predictors. METHODS: A population-based retrospective cohort study of adolescents was conducted using data from a territory-wide voluntary annual health assessment service provided by the Department of Health in Hong Kong. Using diet habits, physical activity, psychological well-being, and demographics, we generated six prediction models for successive weight status (normal, overweight, obese and underweight) using multiclass Decision Tree, Random Forest, k-Nearest Neighbor, eXtreme gradient boosting, support vector machine, logistic regression. Model performance was evaluated by multiple standard classifier metrics and the overall accuracy. Predictors' importance was assessed using Shapley values. RESULTS: 442,898 Primary 4 (P4, Grade 4 in the US) and 344,186 in Primary 6 (P6, Grade 6 in the US) students, with followed up until their Secondary 6 (Grade 12 in the US) during the academic years 1995/96 to 2014/15 were included. The XG Boosts model consistently outperformed all other model in predicting the long-term weight status at S6 from P4 or P6. It achieved an overall accuracy of 0.72 or 0.74, a micro-averaging AUC of 0.92 or 0.93, and a macro-averaging AUC of 0.83 or 0.86, respectively. XG Boost also demonstrated accurate predictions for each predicted weight status, surpassing the AUC values obtained by other models. Weight, height, sex, age, frequency and hours of aerobic exercise were consistently the most important predictors for both cohorts. CONCLUSIONS: The machine learning approaches accurately predict adolescent weight status in both short- and long-term. The developed multiclass model that utilizing easy-assessed variables enables accurate long-term prediction on weight status, which can be used by adolescents and parents for self-prediction when applied in health care system. The interpretable models may help to provide the early and individualized interventions suggestions for adolescents with weight problems particularly.


Assuntos
Aprendizado de Máquina , Humanos , Adolescente , Hong Kong , Masculino , Feminino , Estudos Retrospectivos , Peso Corporal , Exercício Físico , Obesidade Infantil
2.
Artigo em Inglês | MEDLINE | ID: mdl-37015360

RESUMO

Domain generalization aims to learn knowledge invariant across different distributions while semantically meaningful for downstream tasks from multiple source domains, to improve the model's generalization ability on unseen target domains. The fundamental objective is to understand the underlying "invariance" behind these observational distributions and such invariance has been shown to have a close connection to causality. While many existing approaches make use of the property that causal features are invariant across domains, we consider the invariance of the average causal effect of the features to the labels. This invariance regularizes our training approach in which interventions are performed on features to enforce stability of the causal prediction by the classifier across domains. Our work thus sheds some light on the domain generalization problem by introducing invariance of the mechanisms into the learning process. Experiments on several benchmark datasets demonstrate the performance of the proposed method against SOTAs.

3.
Sensors (Basel) ; 9(1): 56-85, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22389588

RESUMO

The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA