Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 97: 103699, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146173

RESUMO

The phytochemical study on the stems of Clausena lenis resulted in the isolation of three new prenylated coumarins, clauselenins A-C (1-3), together with nine known prenylated coumarins (4-12). The chemical structures of new prenylated coumarins (1-3) were elucidated by means of comprehensive spectral analyses and the known compounds (4-12) were determined by means of comparing their experimental spectral data with those described data in the literatures. All isolated prenylated coumarins were assessed for their anti-inflammatory effects together with anti-HIV activities in vitro. Prenylated coumarins 1-12 displayed remarkable inhibitory effects against nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells in vitro with the IC50 values which are comparable to hydrocortisone. Meanwhile, prenylated coumarins 1-12 exhibited considerable anti-HIV-1 reverse transcriptase (RT) activities possessing EC50 values in the range of 0.17-9.08 µM. These findings indicate that the isolation and identification of these prenylated coumarins with pronounced anti-inflammatory effects as well as anti-HIV activities separated from the stems of C. lenis could be of great significance to the development of new anti-inflammatory and anti-HIV agents and their potential applications in the pharmaceutical industry.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Animais , Fármacos Anti-HIV/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Clausena/química , Cumarínicos/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Prenilação , Células RAW 264.7
2.
Front Biosci ; 10: 268-74, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15574367

RESUMO

MutS is a DNA mismatch binding protein that recognizes heteroduplex DNA containing mispaired or unpaired bases. In this study, we employ a quartz crystal microbalance (QCM) and a surface plasmon resonance (SPR) device for the study of MutS binding with DNA containing a single Thymine-Guanine (T-G) mismatch at different sites. Multi-step surface binding reactions are involved in the study, including probe DNA immobilization on the sensor surface through biotin-streptavidin-biotin bridge chemistry, target DNA hybridization to form T-G heteroduplexes, and MutS recognition of the mutation sites. The QCM frequency (d f) and motional resistance (d R, an impedance parameter reflective of QCM damping), as well as the SPR angle shift (d q ) are recorded for the binding reactions. The combined SPR and QCM data collection and analysis allow for an assessment of not only the amount of bound biopolymer but provide also information on also the structural properties of the streptavidin, DNA and MutS/DNA complexes. The affinity of the MutS/T-G heteroduplex assembly is determined by both the QCM and SPR methods through titration of the surface bound DNA with increasing MutS concentration. It is found that if the T-G mismatch is in the center of the DNA fragment, the MutS/DNA complex is more stable than if the mismatch is located near the end of the fragment.


Assuntos
DNA/análise , Guanina/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Ressonância de Plasmônio de Superfície/métodos , Timina/química , Pareamento Incorreto de Bases , Cristalização , Cinética , Mutação , Ácidos Nucleicos Heteroduplexes/química , Polímeros/química , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Thermus/metabolismo
3.
Biosens Bioelectron ; 21(5): 719-26, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16242610

RESUMO

In this study we evaluate the strengths and weaknesses of surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance (QCM) technique for studying DNA assembly and hybridization reactions. Specifically, we apply in parallel an SPR instrument and a 5 MHz QCM device with dissipation monitoring (QCM-D) to monitor the assembly of biotinylated DNA (biotin-DNA) on a streptavidin-modified surface and the subsequent target DNA hybridization. Through the parallel measurements, we demonstrate that SPR is more suitable for quantitative analysis of DNA binding amount, which is essential for interfacial DNA probe density control and for the analysis of its effect on hybridization efficiency and kinetics. Although the QCM is not quantitative to the same extent as SPR (QCM measures the total mass of the bound DNA molecules together with the associated water), the dissipation factor of the QCM provides a qualitative measure of the viscoelastic properties of DNA films and the conformation of the bound DNA molecules. The complexity in mass measurement does not impair QCM's potential for a kinetic evaluation of the hybridization processes. For quantification of target DNA, the biotin-DNA modified SPR and QCM sensors are exposed to target DNA with increasing concentration. The plots of SPR/QCM signals versus target DNA concentration show that water entrapment between DNA strands make the QCM sensitivity for the hybridization assay well comparable with that of the SPR, although the intrinsic mass sensitivity of the 5 MHz QCM is approximately 20 times lower.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , DNA/química , Eletroquímica/métodos , Hibridização In Situ/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ressonância de Plasmônio de Superfície/métodos , DNA/genética , Hibridização Genética , Quartzo
4.
Langmuir ; 21(1): 348-53, 2005 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-15620323

RESUMO

Surface plasmon resonance (SPR) spectroscopy is employed for the study of biotinylated DNA assembly on streptavidin modified gold surfaces for target DNA hybridization. Two immobilization strategies are involved for constructing streptavidin films, namely, (1) physical adsorption on biotin-containing thiol treated surfaces through biotin-streptavidin links and (2) covalent attachment to 11-mercaptoundecanoic acid (MUA) treated surfaces through amine coupling. To understand the structural properties of the streptavidin films, a quartz crystal microbalance with energy dissipation monitoring (QCM-D) is used to monitor the streptavidin immobilization procedures. The simultaneously measured frequency (Deltaf) and dissipation factor (DeltaD) changes, together with the SPR angle shifts (Deltatheta), suggest that the streptavidin film assembled on the biotin-containing surface is highly rigid with a well-ordered structure while the streptavidin film formed through amine coupling is highly dissipative and less structured. The subsequent biotinylated DNA (biotin-DNA) assembly and target hybridization results show that the streptavidin film structure has distinct effects on the biotin-DNA binding amount. On the streptavidin matrix, not only the probe DNA density but also the strand orientation mediated by the streptavidin films has distinct effects on hybridization efficiency. Particularly, the molecularly ordered streptavidin films formed on the biotin-containing surfaces ensure a well-ordered DNA assembly, which in turn allows for a higher efficiency in target DNA capture and for a higher sensitivity in the hybridization analysis when compared to the biotin-DNA assembled on the less structured streptavidin films formed through amine coupling.


Assuntos
Biotina/química , DNA/química , Estreptavidina/química , Ressonância de Plasmônio de Superfície/métodos , Sequência de Bases , Sondas de DNA , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA