RESUMO
BACKGROUND: The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS: The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION: Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Assuntos
Galinhas , Polimorfismo de Nucleotídeo Único , Animais , Galinhas/genética , Genoma , Fenótipo , China , Variação GenéticaRESUMO
In an effort to enhance growth rates, chicken breeders have undertaken intensive genetic selection. In the selection process, the primary aim is to accelerate growth, inadvertently leading to new chicken breeds having an increased capacity for rapid adipose tissue accumulation. However, little is known about the relationship between changes in gene expression and adipose tissue accumulation and deposition in chickens. Therefore, in this study, RNA-seq analysis was utilized, and transcriptome data were obtained from the abdominal fat, thoracic subcutaneous fat, and clavicular fat on day 1 (d1), day 4, day 7, day 11, and day 15 to reveal the molecular mechanisms regulating the development and deposition of different adipose tissues in broiler chicks. The results showed that the key period for adipocyte differentiation and proliferation was between d4 and d7 (abdominal fat development) and between d1 and d4 (chest subcutaneous fat and clavicular fat). In addition, candidate genes such as MYOG, S100A9, CIDEC, THRSP, CXCL13, and NMU related to adipose tissue growth and development were identified. Further, genes (HOXC9, AGT, TMEM182, ANGPTL3, CRP, and DSG2) associated with the distribution of adipose tissue were identified, and genes (MN1, ANK2, and CAP2) related to adipose tissue growth were also identified. Taken together, the results from this study provide the basis for future studies on the mechanisms regulating adipose tissue development in chickens. Further, the candidate genes identified could be used in the selection process.
RESUMO
Chickens are sensitive to heat stress because their capacity to dissipate body heat is low. Hence, in chickens, excessive ambient temperature negatively influences their reproductive performance and health. Heat stress induces inflammation and oxidative stress, thereby rendering many reproductive organs dysfunctional. In this study, we evaluated the effects of the supplementation of dietary quercetin and vitamin E on the uterine function, eggshell quality via estrogen concentration, calcium metabolism, and antioxidant status of the uterus of laying hens under heat stress. The ambient temperature transformation was set at 34 ± 2 °C for 8 h/d (9:00 am-5:00 pm), which was followed by 22 °C to 28 °C for 16 h/d. Throughout the experiment, the relative humidity in the chicken's pen was at 50 to 65%. A total of 400 Tianfu breeder hens (120-days-old) were randomly divided into four dietary experimental groups, including basal diet (Control); basal diet + 0.4 g/kg quercetin; basal diet + 0.2 g/kg vitamin E; and basal diet + the combination of quercetin (0.4 g/kg) and vitamin E (0.2 g/kg). The results show that the combination of quercetin and vitamin E significantly increased the serum alkaline phosphatase levels and the antioxidant status of the uterus (p < 0.05). In addition, the combination of quercetin and vitamin E significantly increased the concentrations of serum estrogen and progesterone, as well as elevated the expression of hypothalamic gonadotropin-releasing hormone-1 and follicular cytochrome P450 family 19 subfamily A member-1 (p < 0.05). We also found that the calcium levels of the serum and uterus were significantly increased by the synergistic effects of quercetin and vitamin E (p < 0.05), and they also increased the expression of Ca2+-ATPase and the mRNA expression of calcium-binding-related genes in the uterus (p < 0.05). These results are consistent with the increased eggshell quality of the laying hens under heat stress. Further, the combination of quercetin and vitamin E significantly increased the uterine morphological characteristics, such as the height of the uterine mucosal fold and the length of the uterine mucosa villus of the heat-stressed laying hens. These results collectively improve the uterine function, serum and uterine calcium concentration, eggshell strength, and eggshell thickness (p < 0.05) in heat-stressed laying hens. Taken together, we demonstrated in the present study that supplementing the combination of dietary quercetin and vitamin E alleviated the effects of heat stress and improved calcium metabolism, hormone synthesis, and uterine function in the heat-stressed laying hens. Thus, the supplementation of the combination of quercetin and vitamin E alleviates oxidative stress in the eggshell gland of heat-stressed laying hens, thereby promoting calcium concentration in the serum and eggshell gland, etc., in laying hens. Hence, the combination of quercetin and vitamin E promotes the reproductive performance of the laying hens under heat stress and can also be used as a potent anti-stressor in laying hens.
RESUMO
The prelaying period is critical for laying hens, marked by significant physiological changes such as increased egg production, hormone secretion, and higher nutritional demands. These changes stress the intestine, which is vital for nutrient digestion, absorption, immune defense, and maintaining antioxidant and microbial balance. During this period, maintaining the intestinal health is essential for efficient nutrient absorption. Curcumin, a plant-derived extract, offers antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory benefits, that can improve gut function. This study evaluated the effects of curcumin on the intestinal structure, immune barrier function, and cecal microbiota composition in laying hens during their early laying period. A total of 180 Snowy White chickens (154 days old) were divided into 5 experimental groups, receiving curcumin at 0 mg/kg, 100 mg/kg, 200 mg/kg, 300 mg/kg, and 400 mg/kg for 12 wk. The results showed that curcumin significantly improved the intestinal morphology (P < 0.05), increased mRNA expression of digestive enzymes (such as MGAM, SI, and ANPEP), and enhanced the digestive and absorptive functions. Further, curcumin improved the levels of antioxidant parameters (such as CAT, GSH-PX, T-AOC, and T-SOD) in the ileum, jejunum, and duodenum, and increased the expression of immunoglobulins (IgA, IgM, IgG) in the intestinal segments and serum (P < 0.05). Curcumin also improved the intestinal immune barrier function by increasing ZO-1 and Occludin expression. Furthermore, it altered the gut microbiota composition by increasing the relative abundance of beneficial bacterial phyla such as Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria (P < 0.05). At the genus level, curcumin supplementation enhanced the beneficial genera like Phocaeicola, Alistipes, Prevotella, Barnesiella, and Bifidobacterium (P < 0.05), thereby promoting the gut health and microbial diversity. In conclusion, curcumin supplementation during the early laying period of hens offers significant benefits by improving the intestinal health, immune function, and gut microbiota composition. Hence, curcumin serves as a promising dietary additive to support nutrient absorption and immune defense in laying hens during the early laying period of hens.
RESUMO
The aim of this study was to evaluate the effects of a high-energy low-protein (HELP) diet on lipid metabolism and inflammation in the liver and abdominal adipose tissue (AAT) of laying hens. A total of 200 Roman laying hens (120 days old) were randomly divided into two experimental groups: negative control group (NC group) and HELP group, with 100 hens per group. The chickens in the NC group were fed with a basic diet, whereas those in the HELP group were given a HELP diet. Blood, liver, and AAT samples were collected from 20 chickens per group at each experimental time point (30, 60, and 90 d). The morphological and histological changes in the liver and AAT were observed, and the level of serum biochemical indicators and the relative expression abundance of key related genes were determined. The results showed that on day 90, the chickens in the HELP group developed hepatic steatosis and inflammation. However, the diameter of the adipocytes of AAT in the HELP group was significantly larger than that of the NC group. Furthermore, the results showed that the extension of the feeding time significantly increased the lipid contents, lipid deposition, inflammatory parameters, and peroxide levels in the HELP group compared with the NC group, whereas the antioxidant parameters decreased significantly. The mRNA expression levels of genes related to lipid synthesis such as fatty acid synthase (FASN), stearoyl-coA desaturase (SCD), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor gamma (PPARγ) increased significantly in the liver and AAT of the HELP group, whereas genes related to lipid catabolism decreased significantly in the liver. In addition, the expression of genes related to lipid transport and adipokine synthesis decreased significantly in the AAT, whereas in the HELP group, the expression levels of pro-inflammatory parameters such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) increased significantly in the liver and AAT. Conversely, the expression level of the anti-inflammatory parameter interleukin-10 (IL-10) decreased significantly in the liver. The results indicated that the HELP diet induced lipid peroxidation and inflammation in the liver and AAT of the laying hens. Hence, these results suggest that chicken AAT may be involved in the development of fatty liver.
RESUMO
In the present study, the synergistic effects of quercetin (Q) and vitamin E (E) on cecal microbiota composition and function, as well as the microbial metabolic profile in aged breeder hens were investigated. A total of 400 (65 weeks old) Tianfu breeder hens were randomly allotted to four experimental groups (four replicates per group). The birds were fed diets containing quercetin at 0.4 g/kg, vitamin E (0.2 g/kg), quercetin and vitamin E (QE; 0.4 g/kg and 0.2 g/kg), and a basal diet for a period of 10 wks. After the 10 week experimental period, the cecal contents of 8 aged breeder hens per group were sampled aseptically and subjected to high-throughput 16S rRNA gene sequencing and untargeted metabolomic analysis. The results showed that the relative abundances of phyla Bacteroidota, Firmicutes, and Actinobacteriota were the most prominent among all the dietary groups. Compared to the control group, the relative abundance of the families Bifidobacteriaceae, Lachnospiraceae, Tannerellaceae, Mathonobacteriaceae, Barnesiellaceae, and Prevotellaceae were enriched in the QE group; and Bacteroidaceae, Desulfovibrionaceae, Peptotostretococcaceae, and Fusobacteriaceae were enriched in the Q group, whereas those of Lactobacillaceae, Veillonellaceae, Ruminococcaceae, Akkermansiaceae, and Rikenellaceae were enriched in the E group compared to the control group. Untargeted metabolomics analyses revealed that Q, E, and QE modified the abundance of several metabolites in prominent pathways including ubiquinone and other terpenoid-quinone biosynthesis, regulation of actin cytoskeleton, insulin secretion, pancreatic secretion, nicotine addiction, and metabolism of xenobiotics by cytochrome P450. Furthermore, key cecal microbiota, significantly correlated with important metabolites, for example, (S)-equol positively correlated with Alistipes and Chlamydia in E_vs_C, and negatively correlated with Olsenella, Paraprevotella, and Mucispirillum but, a contrary trend was observed with Parabacteroides in QE_vs_C. This study establishes that the synergy of quercetin and vitamin E alters the cecal microbial composition and metabolite profile in aged breeder hens, which lays a foundation for chicken improvement programs.
RESUMO
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1ß), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Assuntos
Galinhas , Vitamina E , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Quercetina/farmacologia , RNA Mensageiro , Vitamina E/farmacologiaRESUMO
The current study aims to investigate the effects of the synergy between quercetin and vitamin E in aged hen's diet on hatchability and antioxidant levels of the embryo and newly hatched chicks from prolonged storage eggs. A total of 400 breeder laying hens of 65 weeks of age were selected and randomly divided into 4 groups. Birds were fed a basal diet alone (Control), and basal diets supplemented with quercetin (Q) (0.4 g/kg) and vitamin E (VE) (0.2 g/kg) alone and their combination (0.4 g/kg Q + 0.2 g/kg VE) for 14 weeks, respectively, to determine their effects on yolk antioxidant status, fertility, embryonic mortality, hatchability, antioxidant status of embryonic tissues, as well as the antioxidant status of the newly hatched chicks. The results showed that the hen's dietary Q + VE increased the yolk weight, as well as increased the antioxidant status of the egg yolk (p < 0.05). Compared with the control group, the supplementation of Q + VE significantly increased the hatchability of set-fertile eggs and decreased early embryonic mortality in eggs stored for 7 and 14 days, respectively (p < 0.05), and also improved the antioxidant capacity of the embryos obtained from eggs stored for 14 days (before incubation) (p < 0.05). Moreover, Q + VE increased the levels of SOD, GSH-Px, T-AOC, T-SOD, and CAT in the liver, heart, and pectoral muscle of the embryo, 1-day-old and 14-day-old chicks (p < 0.05), as well as upregulated the antioxidant related genes (GPx-1, GPx-2, GPx-4, DIO-1, and SOD-1) in the liver of the embryo, 1-day-old and 14-day-old chicks hatched from 14-days storage eggs (p < 0.05). Meanwhile, the MDA levels were decreased by the Q + VE in the embryo and post-hatched chicks (p < 0.05). In conclusion, these findings suggested that maternal dietary Q + VE exerts beneficial synergistic effects on the antioxidant capacity of the egg yolk, embryo, and chicks during prolong egg storage, therefore, Q + VE could be used as a dietary measure to enhance hatchability and chick quality in poultry production.