Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Endocr Regul ; 58(1): 26-39, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345496

RESUMO

Hyperglycemia in diabetes mediates the release of angiogenic factors, oxidative stress, hypoxia, and inflammation, which in turn stimulate angiogenesis. Excessive angiogenesis can cause diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. All of these complications are debilitating, which may lead to an increased susceptibility to lower-limb amputations due to ulcerations and infections. In addition, microvascular alterations, segmental demyelination, and endoneurial microangiopathy may cause progressive deterioration ultimately leading to kidney failure and permanent blindness. Some medicinal plants have potent anti-angiogenic, antioxidant or anti-inflammatory properties that can ameliorate angiogenesis in diabetes. The purpose of this systematic review is to demonstrate the potential of medicinal plants in ameliorating the neovascularization activities in diabetes. Manuscripts were searched from PubMed, Science Direct, and Scopus databases, and Google Scholar was used for searching additional papers. From 1862 manuscripts searched, 1854 were excluded based on inclusion and exclusion criteria and 8 were included into this systematic review, whereas the required information was extracted and summarized. All identified medicinal plants decreased the high blood glucose levels in diabetes, except the aqueous extract of Lonicerae japonicae flos (FJL) and Vasant Kusumakar Ras. They also increased the reduced body weight in diabetes, except the aqueous extract of FL and total lignans from Fructus arctii. However, methanolic extract of Tinospora cordifolia and Vasant Kusumakar Ras were not tested for their ability to affect the body weight. Besides, all medicinal plants identified in this systematic review decreased the vascular endothelial growth factor (VEGF) protein expression and vasculature activity demonstrated by histopathological examination indicating promising anti-angiogenic properties. All medicinal plants identified in this systematic review have a potential to ameliorate neovascularization activities in diabetes by targeting the mechanistic pathways related to oxidative stress, inflammation, and angiogenesis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Plantas Medicinais , Fator A de Crescimento do Endotélio Vascular , Inflamação , Peso Corporal
2.
Environ Chem Lett ; : 1-41, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37362012

RESUMO

Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 µg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.

3.
Plant Foods Hum Nutr ; 78(2): 233-242, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947371

RESUMO

Himanthalia elongata is a brown seaweed containing several nutritional compounds and bioactive substances including antioxidants, dietary fibre, vitamins, fatty acids, amino acids, and macro- and trace- elements. A variety of bioactive compounds including phlorotannins, flavonoids, dietary fucoxanthin, hydroxybenzoic acid, hydroxycinnamic acid, polyphenols and carotenoids are also present in this seaweed. Multiple comparative studies were carried out between different seaweed species, wherein H. elongata was determined to exhibit high antioxidant capacity, total phenolic content, fucose content and potassium concentrations compared to other species. H. elongata extracts have also shown promising anti-hyperglycaemic and neuroprotective activities. H. elongata is being studied for its potential industrial food applications. In new meat product formulations, it lowered sodium content, improved phytochemical and fiber content in beef patties, improved properties of meat gel/emulsion systems, firmer and tougher with improved water and fat binding properties. This narrative review provides a comprehensive overview of the nutritional composition, bioactive properties, and food applications of H. elongata.


Assuntos
Phaeophyceae , Alga Marinha , Animais , Bovinos , Alga Marinha/química , Phaeophyceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis/farmacologia
4.
Molecules ; 27(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011497

RESUMO

Genistein is a naturally occurring polyphenolic molecule in the isoflavones group which is well known for its neuroprotection. In this review, we summarize the efficacy of genistein in attenuating the effects of memory impairment (MI) in animals. Scopus, PubMed, and Web of Science databases were used to find the relevant articles and discuss the effects of genistein in the brain, including its pharmacokinetics, bioavailability, behavioral effects, and some of the potential mechanisms of action on memory in several animal models. The results of the preclinical studies highly suggested that genistein is highly effective in enhancing the cognitive performance of the MI animal models, specifically in the memory domain, including spatial, recognition, retention, and reference memories, through its ability to reduce oxidative stress and attenuate neuroinflammation. This review also highlighted challenges and opportunities to improve the drug delivery of genistein for treating MI. Along with that, the possible structural modifications and derivatives of genistein to improve its physicochemical and drug-likeness properties are also discussed. The outcomes of the review proved that genistein can enhance the cognitive performance and ameliorate MI in different preclinical studies, thus indicating its potential as a natural lead for the design and development of a novel neuroprotective drug.


Assuntos
Encéfalo/metabolismo , Genisteína/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Desenho de Fármacos , Humanos , Transtornos da Memória/metabolismo , Doenças Neuroinflamatórias/metabolismo
5.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163934

RESUMO

Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin's preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin's cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.


Assuntos
Produtos Biológicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Desenvolvimento de Medicamentos , Flavonoides/farmacologia , Glicosídeos/farmacologia , Animais , Humanos
6.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163999

RESUMO

Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Diterpenos/farmacologia , Desenho de Fármacos , Desenvolvimento de Medicamentos , Inflamação/tratamento farmacológico , Animais , Citocinas/metabolismo , Humanos
7.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014304

RESUMO

Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (ß-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses.


Assuntos
Estilbenos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antivirais , Descoberta de Drogas , Preparações Farmacêuticas , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico
8.
BMC Nephrol ; 21(1): 388, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894076

RESUMO

BACKGROUND: New-onset diabetes after transplantation (NODAT) is associated with reduced patient and graft survival. This study examined the clinical and selected genetic factors associated with NODAT among renal-transplanted Malaysian patients. METHODS: This study included 168 non-diabetic patients (58% males, 69% of Chinese ethnicity) who received renal transplantation between 1st January 1994 to 31st December 2014, and were followed up in two major renal transplant centres in Malaysia. Fasting blood glucose levels were used to diagnose NODAT in patients who received renal transplantation within 1 year. Two single nucleotide polymorphisms (SNPs), namely; rs1494558 (interleukin-7 receptor, IL-7R) and rs2232365 (mannose-binding leptin-2, MBL2) were selected and genotyped using Sequenom MassArray platform. Cox proportional hazard regression analyses were used to examine the risk of developing NODAT according to the different demographics and clinical covariates, utilizing four time-points (one-month, three-months, six-months, one-year) post-transplant. RESULTS: Seventeen per cent of patients (n = 29, 55% males, 69% Chinese) were found to have developed NODAT within one-year of renal transplantation based on their fasting blood glucose levels. NODAT patients had renal transplantation at an older age compared to non-NODAT (39.3 ± 13.4 vs 33.9 ± 11.8 years, p = 0.03). In multivariate analysis, renal-transplanted patients who received a higher daily dose of cyclosporine (mg) were associated with increased risk of NODAT (Hazard ratio (HR) =1.01 per mg increase in dose, 95% confidence interval (CI) 1.00-1.01, p = 0.002). Other demographic (gender, ethnicities, age at transplant) and clinical factors (primary kidney disease, type of donor, place of transplant, type of calcineurin inhibitors, duration of dialysis pre-transplant, BMI, creatinine levels, and daily doses of tacrolimus and prednisolone) were not found to be significantly associated with risk of NODAT. GA genotype of rs1494558 (HR = 3.15 95% CI 1.26, 7.86) and AG genotype of rs2232365 (HR = 2.57 95% CI 1.07, 6.18) were associated with increased risk of NODAT as compared to AA genotypes. CONCLUSION: The daily dose of cyclosporine and SNPs of IL-7R (rs1494558) and MBL2 (rs2232365) genes are significantly associated with the development of NODAT in the Malaysian renal transplant population.


Assuntos
Ciclosporina/administração & dosagem , Diabetes Mellitus/epidemiologia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Falência Renal Crônica/cirurgia , Transplante de Rim , Complicações Pós-Operatórias/epidemiologia , Adulto , Fatores Etários , Inibidores de Calcineurina/uso terapêutico , Diabetes Mellitus/genética , Feminino , Predisposição Genética para Doença , Sobrevivência de Enxerto , Humanos , Subunidade alfa de Receptor de Interleucina-7/genética , Malásia , Masculino , Lectina de Ligação a Manose/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Complicações Pós-Operatórias/genética , Modelos de Riscos Proporcionais , Fatores de Risco , Taxa de Sobrevida , Adulto Jovem
9.
Biochim Biophys Acta Gen Subj ; 1861(2): 296-306, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27750041

RESUMO

BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process. METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion. RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6. CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway. GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/metabolismo , Comunicação Parácrina/fisiologia , Cicatrização/fisiologia
10.
Metab Brain Dis ; 32(6): 1767-1783, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28681200

RESUMO

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Comportamento Aditivo/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Metanfetamina/administração & dosagem , MicroRNAs/metabolismo , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/genética , Animais , Comportamento Aditivo/genética , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , MicroRNAs/genética , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Wistar , Autoadministração
12.
J Mol Histol ; 55(3): 317-328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630414

RESUMO

BACKGROUND: Autophagy plays multifaceted roles in regulating hepatocellular carcinoma (HCC) and the mechanisms involved are under-explored. Regulatory microRNAs (miRNAs) have been reported to target autophagy proteins but their roles in HCC is not well studied. Using HCC patient tissues, this study aims to investigate the association of autophagy with several clinicopathological parameters as well as identifying the autophagy-related miRNAs and the possible pathways. METHODS AND RESULTS: Autophagy level in the HCC patient-derived cancer and non-cancer tissues was determined by immunohistochemistry (IHC) targeting SQSTM1, LC3A and LC3B proteins. Significance tests of clinicopathological variables were tested using the Fisher's exact or Chi-square tests. Gene and miRNA expression assays were carried out and analyzed using Nanostring platform and software followed by validation of other online bioinformatics tools, namely String and miRabel. Autophagy expression was significantly higher in cancerous tissues compared to adjacent non-cancer tissues. High LC3B expression was associated with advanced tumor histology grade and tumor location. Nanostring gene expression analysis revealed that SQSTM1, PARP1 and ATG9A genes were upregulated in HCC tissues compared to non-cancer tissues while SIRT1 gene was downregulated. These genes are closely related to an autophagy pathway in HCC. Further, using miRabel tool, three downregulated miRNAs (hsa-miR-16b-5p, hsa-miR-34a-5p, and hsa-miR-660-5p) and one upregulated miRNA (hsa-miR-539-5p) were found to closely interact with the abovementioned autophagy-related genes. We then mapped out the possible pathway involving the genes and miRNAs in HCC tissues. CONCLUSIONS: We conclude that autophagy events are more active in HCC tissues compared to the adjacent non-cancer tissues. We also reported the possible role of several miRNAs in regulating autophagy-related genes in the autophagy pathway in HCC. This may contribute to the development of potential therapeutic targets for improving HCC therapy. Future investigations are warranted to validate the target genes reported in this study using a larger sample size and more targeted molecular technique.


Assuntos
Autofagia , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , MicroRNAs , Proteínas Associadas aos Microtúbulos , Proteína Sequestossoma-1 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Transdução de Sinais/genética , Adulto
13.
Artigo em Inglês | MEDLINE | ID: mdl-38494932

RESUMO

Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.

14.
ACS Omega ; 9(5): 5100-5126, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343989

RESUMO

Mercury is a type of hazardous and toxic pollutant that can result in detrimental effects on the environment and human health. This review is aimed at discussing the state-of-the-art progress on the recent developments on the toxicity of mercury and its chemical compounds. More than 210 recent works of literature are covered in this review. It first delineates the types (covering elemental mercury, inorganic mercury compounds, organic mercury compounds), structures, and sources of mercury. It then discusses the pharmacokinetic profile of mercury, molecular mechanisms of mercury toxicity, and clinical manifestation of acute and chronic mercury toxicity to public health. It also elucidates the mercury toxicity to the environment and human health in detail, covering ecotoxicity, neurotoxicity diseases, neurological diseases, genotoxicity and gene regulation, immunogenicity, pregnancy and reproductive system damage, cancer promotion, cardiotoxicity, pulmonary diseases, and renal disease. In order to mitigate the adverse effects of mercury, strategies to overcome mercury toxicity are recommended. Finally, some future perspectives are provided in order to advance this field of research in the future.

15.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992414

RESUMO

Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.


Assuntos
Vírus da Dengue , Dengue , Hepatite C Crônica , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Vírus da Dengue/metabolismo , Dengue/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Replicação Viral
16.
Foods ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835263

RESUMO

Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.

17.
J Biomol Struct Dyn ; 41(13): 6203-6218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35904027

RESUMO

Diabetes mellitus (DM) is a global chronic disease characterized by hyperglycemia and insulin resistance. The unsavory severe gastrointestinal side-effects of synthetic drugs to regulate hyperglycemia have warranted the search for alternative treatments to inhibit the carbohydrate digestive enzymes (e.g. α-amylase and α-glucosidase). Certain phytochemicals recently captured the scientific community's attention as carbohydrate digestive enzyme inhibitors due to their low toxicity and high efficacy, specifically the Withanolides-loaded extract of Withania somnifera. That said, the present study evaluated in silico the efficacy of Withanolide A in targeting both α-amylase and α-glucosidase in comparison to the synthetic drug Acarbose. Protein-ligand interactions, binding affinity, and stability were characterized using pharmacological profiling, high-end molecular docking, and molecular-dynamic simulation. Withanolide A inhibited the activity of α-glucosidase and α-amylase better, exhibiting good pharmacokinetic properties, absorption, and metabolism. Also, Withanolide A was minimally toxic, with higher bioavailability. Interestingly, Withanolide A bonded well to the active site of α-amylase and α-glucosidase, yielding the lowest binding free energy of -82.144 ± 10.671 kcal/mol and -102.1043 ± 11.231 kcal/mol compared to the Acarbose-enzyme complexes (-63.220 ± 13.283 kcal/mol and -82.148 ± 10.671 kcal/mol). Hence, the findings supported the therapeutic potential of Withanolide A as α-amylase and α-glucosidase inhibitor for DM treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Acarbose/farmacologia , alfa-Glucosidases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , alfa-Amilases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
18.
J Pers Med ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36836504

RESUMO

SLC1A2 is a gene encoded for the excitatory amino acid transporter 2 which is responsible for glutamate reuptake from the synaptic cleft in the central nervous system. Recent studies have suggested that polymorphisms on glutamate transporters can affect drug dependence, leading to the development of neurological diseases and psychiatric disorders. Our study investigated the association of rs4755404 single nucleotide polymorphism (SNP) of the SLC1A2 gene with methamphetamine (METH) dependence and METH-induced psychosis and mania in a Malaysian population. The rs4755404 gene polymorphism was genotyped in METH-dependent male subjects (n = 285) and male control subjects (n = 251). The subjects consisted of the four ethnic groups in Malaysia (Malay, Chinese, Kadazan-Dusun, and Bajau). Interestingly, there was a significant association between rs4755404 polymorphism and METH-induced psychosis in the pooled METH-dependent subjects in terms of genotype frequency (p = 0.041). However, there was no significant association between rs4755404 polymorphism and METH dependence. Also, the rs455404 polymorphism was not significantly associated with METH-induced mania for both genotype frequencies and allele frequencies in the METH-dependent subjects, regardless of stratification into the different ethnicities. Our study suggests that the SLC1A2 rs4755404 gene polymorphism confers some susceptibility to METH-induced psychosis, especially for those who carry the GG homozygous genotype.

19.
J Cancer ; 14(13): 2491-2516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670975

RESUMO

Gastrointestinal (GI) cancers are among the most common cancers that impact the global population, with high mortality and low survival rates after breast and lung cancers. Identifying useful molecular targets in GI cancers are crucial for improving diagnosis, prognosis, and treatment outcomes, however, limited by poor targeting and drug delivery system. Aptamers are often utilized in the field of biomarkers identification, targeting, and as a drug/inhibitor delivery cargo. Their natural and chemically modifiable binding capability, high affinity, and specificity are favored over antibodies and potential early diagnostic imaging and drug delivery applications. Studies have demonstrated the use of different aptamers as drug delivery agents and early molecular diagnostic and detection probes for treating cancers. This review aims to first describe aptamers' generation, characteristics, and classifications, also providing insights into their recent applications in the diagnosis and medical imaging, prognosis, and anticancer drug delivery system of GI cancers. Besides, it mainly discussed the relevant molecular targets and associated molecular mechanisms involved, as well as their applications for potential treatments for GI cancers. In addition, the current applications of aptamers in a clinical setting to treat GI cancers are deciphered. In conclusion, aptamers are multifunctional molecules that could be effectively used as an anticancer agent or drug delivery system for treating GI cancers and deserve further investigations for clinical applications.

20.
Microorganisms ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110423

RESUMO

Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA