RESUMO
Sb2Se3 emerges as a promising material for solar energy conversion devices. Unfortunately, the common deep-level defect VSe (selenium vacancy) in Sb2Se3 results in a low solar conversion efficiency. The post selenization process has been widely adopted for suppressing VSe. However, the effect of selenization on suppressing VSe is often compromised and even more VSe are induced due to defect-correlation. Herein, high-quality Sb2Se3 films are prepared using an unconventional selenization process, with precisely regulating in situ annealing Se vapor pressure. It is found that moderate Se vapor pressure annealing can efficiently suppress VSe by overcoming defect-correlation, as well as promotes grain growth and forms a better heterojunction band alignment. Consequently, the Sb2Se3 photocathode shows a high-level photocurrent of 19.5 mA cm-2 at 0 VRHE, an onset potential of 0.40 VRHE and a half-cell solar-to-hydrogen conversion efficiency of 1.9%, owing to the inhibited charge recombination, excellent charge transport and interface charge extraction. This work provides a significant insight to suppress deep-level defect VSe by adjusting Se vapor pressure for efficient Sb2Se3 photocathode.
RESUMO
PURPOSE OF REVIEW: Maintaining positive health behaviours promotes better health outcomes for people with type 1 diabetes (T1D). However, implementing these behaviours may also lead to additional management burdens and challenges. Diabetes technologies, including continuous glucose monitoring systems, automated insulin delivery systems, and digital platforms, are being rapidly developed and widely used to reduce these burdens. Our aim was to review recent evidence to explore the influence of these technologies on health behaviours and well-being among adults with T1D and discuss future directions. RECENT FINDINGS: Current evidence, albeit limited, suggests that technologies applied in diabetes self-management education and support (DSME/S), nutrition, physical activity (PA), and psychosocial care areas improved glucose outcomes. They may also increase flexibility in insulin adjustment and eating behaviours, reduce carb counting burden, increase confidence in PA, and reduce mental burden. Technologies have the potential to promote health behaviours changes and well-being for people with T1D. More confirmative studies on their effectiveness and safety are needed to ensure optimal integration in standard care practices.
Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/psicologia , Automonitorização da Glicemia , Promoção da Saúde , Glicemia , Insulina , Comportamentos Relacionados com a Saúde , TecnologiaRESUMO
The recent development of nanobiomaterials has shed some light on the field of periodontal tissue regeneration. Laponite (LAP), an artificially synthesized two-dimensional (2D) disk-shaped nanosilicate, has garnered substantial attention in regenerative biomedical applications owing to its distinctive structure, exceptional biocompatibility and bioactivity. This study endeavors to comprehensively evaluate the influence of LAP on periodontal regeneration. The effects of LAP on periodontal ligament cells (PDLCs) on osteogenesis, cementogenesis and angiogenesis were systematically assessed, and the potential mechanism was explored through RNA sequencing. The results indicated that LAP improved osteogenic and cementogenic differentiation of PDLCs, the regulatory effects of LAP on PDLCs were closely correlated with activation of PI3K-AKT signaling pathway. Moreover, LAP enhanced angiogenesis indirectly via manipulating paracrine of PDLCs. Then, LAP was implanted into rat periodontal defect to confirm its regenerative potential. Both micro-CT and histological analysis indicated that LAP could facilitate periodontal tissue regeneration in vivo. These findings provide insights into the bioactivity and underlying mechanism of LAP on PDLCs, highlighting it might be a potential therapeutic option in periodontal therapy.
Assuntos
Diferenciação Celular , Osteogênese , Ligamento Periodontal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Regeneração , Transdução de Sinais , Silicatos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Silicatos/farmacologia , Silicatos/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Masculino , Células Cultivadas , CementogêneseRESUMO
Electrotherapy is a promising tissue repair technique. However, electrotherapy devices are frequently complex and must be placed adjacent to injured tissue, thereby limiting their clinical application. Here, we propose a general strategy to facilitate tissue repair by modulating endogenous electric fields with nonadjacent (approximately 44 mm) wireless electrotherapy through a 3D-printed entirely soft and bioresorbable triboelectric nanogenerator based stimulator, without any electrical accessories, which has biomimetic mechanical properties similar to those of soft tissue. In addition, the feasibility of using the stimulator to construct an electrical double layer with tissue for nonadjacent wireless electrotherapy was demonstrated by skin and muscle injury models. The treated groups showed significantly improved tissue repair compared with the control group. In conclusion, we developed a promising electrotherapy strategy and may inspire next-generation electrotherapy for tissue repair.
Assuntos
Implantes Absorvíveis , Polímeros , Eletricidade , Cicatrização , Impressão TridimensionalRESUMO
The calmodulin-binding transcriptional activator (CAMTA) is a small, conserved gene family in plants that plays a crucial role in regulating growth, development, and responses to various abiotic stress. Given the significance of the CAMTA gene family, various studies have been dedicated to uncovering its functional characteristics. In this study, genome-wide identification and bioinformatics analysis were conducted to explore CAMTAs in Phoebe bournei. A total of 17 CAMTA genes, each containing at least one domain from CG-1, TIG, ANK, or IQ, were identified in the P. bournei genome. The diversity of PbCAMTAs could be varied depending on their subcellular localization. An analysis of protein motifs, domains, and gene structure revealed that members within the same subgroup exhibited similar organization, supporting the results of the phylogenetic analysis. Gene duplications occurred among members of the PbCAMTA gene family. According to the cis-regulatory element prediction and protein-protein interaction network analysis, eight genes were subjected to qRT-PCR under drought, heat, and light stresses. The expression profiles indicated that PbCAMTAs, particularly PbCAMTA2, PbCAMTA12, and PbCAMTA16, were induced by abiotic stress. This study provides profound insights into the functions of CAMTAs in P. bournei.
Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luz , Transativadores/genética , Transativadores/metabolismo , Temperatura AltaRESUMO
BACKGROUND AND OBJECTIVES: Osteoporosis (OP) and periodontitis are both diseases with excessive bone resorption, and the number of patients who suffer from these diseases is expected to increase. OP has been identified as a risk factor that accelerates the pathological process of periodontitis. Achieving effective and safe periodontal regeneration in OP patients is a meaningful challenge. This study aimed to assess the efficacy and biosecurity of human cementum protein 1 (hCEMP1) gene-modified cell sheets for periodontal fenestration defect regeneration in an OP rat model. MATERIALS AND METHODS: Rat adipose-derived mesenchymal stem cells (rADSCs) were isolated from Sprague-Dawley rats. After primary culture, rADSCs were subjected to cell surface analysis and multi-differentiation assay. And rADSCs were transduced with hCEMP1 by lentiviral vector, and hCEMP1 gene-modified cell sheets were generated. The expression of hCEMP1 was evaluated by reverse transcription polymerase chain reaction and immunocytochemistry staining, and transduced cell proliferation was evaluated by Cell Counting Kit-8. The hCEMP1 gene-modified cell sheet structure was detected by histological analysis and scanning electron microscopy. Osteogenic and cementogenic-associated gene expression was evaluated by real-time quantitative polymerase chain reaction. In addition, an OP rat periodontal fenestration defect model was used to evaluate the regeneration effect of hCEMP1 gene-modified rADSC sheets. The efficacy was assessed with microcomputed tomography and histology, and the biosecurity of gene-modified cell sheets was evaluated by histological analysis of the spleen, liver, kidney and lung. RESULTS: The rADSCs showed a phenotype of mesenchymal stem cells and possessed multi-differentiation capacity. The gene and protein expression of hCEMP1 through lentiviral transduction was confirmed, and there was no significant effect on rADSC proliferation. Overexpression of hCEMP1 upregulated osteogenic and cementogenic-related genes such as runt-related transcription factor 2, bone morphogenetic protein 2, secreted phosphoprotein 1 and cementum attachment protein in the gene-modified cell sheets. The fenestration lesions in OP rats treated with hCEMP1 gene-modified cell sheets exhibited complete bone bridging, cementum and periodontal ligament formation. Furthermore, histological sections of the spleen, liver, kidney and lung showed no evident pathological damage. CONCLUSION: This pilot study demonstrates that hCEMP1 gene-modified rADSC sheets have a marked ability to enhance periodontal regeneration in OP rats. Thus, this approach may represent an effective and safe strategy for periodontal disease patients with OP.
Assuntos
Células-Tronco Mesenquimais , Osteoporose , Ligamento Periodontal , Animais , Humanos , Ratos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Cemento Dentário , Osteogênese , Osteoporose/genética , Osteoporose/terapia , Periodontite/genética , Periodontite/terapia , Projetos Piloto , Ratos Sprague-Dawley , Microtomografia por Raio-XRESUMO
Three new rearranged diterpenoids, strophioblachins A-C (1-3), eight new diterpenoids, strophioblachins D-K (4-11), and seven previously described diterpenoids (12-18) were purified from the aerial parts of Strophioblachia fimbricalyx. Compounds 1 and 2 contain a rare 6/6/5/6 ring system, while 3 has an uncommon tricyclo[4.4.0.08,9]tridecane-bridged unit, and their diterpenoid skeletons are being reported for the first time. Utilizing spectroscopic and HRESIMS data analysis, the structures of the new compounds (1-11) were established, and ECD and 13C NMR calculations were used to confirm the relative and absolute configurations of 11 and 9. The absolute configurations of compounds 1, 3, and 10 were established using single-crystal X-ray diffraction. The results of testing for anticardiac hypertrophic activity demonstrated that compounds 10 and 15 dose-dependently lowered the mRNA expression of Nppa and Nppb. Protein levels were confirmed by Western blotting, which also demonstrated that compounds 10 and 15 lowered the expression of the hypertrophic marker ANP. The cytotoxic activity against neonatal rat cardiomyocytes was assayed in vitro by the CCK-8 and ELISA methods, and the results showed that compounds 10 and 15 were only very weakly active in the range.
Assuntos
Diterpenos , Euphorbiaceae , Ratos , Animais , Diterpenos/farmacologia , Diterpenos/química , Euphorbiaceae/química , Espectroscopia de Ressonância Magnética , Cristalografia por Raios X , Estrutura MolecularRESUMO
Background: The lack of physical activity is a common issue in modern society and is considered a major risk factor for various chronic non-communicable diseases. Bioactive factors secreted by skeletal muscle during exercise play a crucial role in inter-organ interactions. Since the concept of "myokines" was proposed in 2004, hundreds of regulatory myokines have been identified. Visual analysis of research on exercise-regulated myokines is significant to explore research hotspots and frontiers in this field. Methods: Research literature on exercise-regulated myokines from 2003 to 2023 in the "Web of Science" database was used as the data source. Knowledge maps were drawn using "VOS Viewer, CiteSpace, and R-bibliometrix" software. Results: A total of 1,405 papers were included, showing a fluctuating yet slow growth in annual publications. The United States and China led in the number of publications and collaboration networks. Harvard University ranked first with 120 publications. CIBER (centrality 0.16) and the University of California System (centrality 0.16) were pivotal in advancing this field. PEDERSEN BK led author rankings with 41 publications and 1,952 citations. FRONTIERS IN PHYSIOLOGY ranked first among journals with 64 publications and the highest g-index (39), while PLoS One had the highest h-index (25) and most citations (2,599). Key co-cited reference clusters included #1 skeletal muscle dysfunction, #2 obesity, #6 ASCs, and #7 adaptive immunocytes. Pontus Boström's paper had a notable citation burst intensity of 77.37. High-frequency keywords were "exercise" (509), "skeletal muscle" (452), and "expression" (293), with long-term keywords such as #0 irisin, #2 insulin resistance, #3 transcription, and #6 physical activity. Recently, keywords like "physical exercise," "resistance exercise," "aerobic exercise," "insulin," and "oxidative stress" have emerged. Conclusion: Research in the field of exercise-regulated myokines shows an overall upward trend. The focus areas include myokines mediated by different types of exercise, the interaction of irisin-mediated muscle with other organs, and the important role of myokine-mediated oxidative stress in exercise simulation.
RESUMO
Regeneration of oral craniofacial bone defects is a complex process, and reconstruction of large bone defects without the use of exogenous cells or bioactive substances remains a major challenge. Hydrogels are highly hydrophilic polymer networks with the potential to promote bone tissue regeneration. In this study, functional peptide Dentonin was loaded onto self-assembled peptide hydrogels (RAD) to constitute functionally self-assembling peptide RAD/Dentonin hydrogel scaffolds with a view that RAD/Dentonin hydrogel could facilitate vascularized bone regeneration in critical-size calvarial defects. The functionalized peptide RAD/Dentonin forms highly ordered ß-sheet supramolecular structures via non-covalent interactions like hydrogen bonding, ultimately assembling into nano-fiber network. RAD/Dentonin hydrogels exhibited desirable porosity and swelling properties, and appropriate biodegradability. RAD/Dentonin hydrogel supported the adhesion, proliferation and three-dimensional migration of bone marrow mesenchymal stem cells (BMSCs) and has the potential to induce differentiation of BMSCs towards osteogenesis through activation of the Wnt/ß-catenin pathway. Moreover, RAD/Dentonin hydrogel modulated paracrine secretion of BMSCs and increased the migration, tube formation and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs), which boosted the angiogenic capacity of HUVECs. In vivo, RAD/Dentonin hydrogel significantly strengthened vascularized bone formation in rat calvarial defect. Taken together, these results indicated that the functionalized self-assembling peptide RAD/Dentonin hydrogel effectively enhance osteogenic differentiation of BMSCs, indirectly induce angiogenic effects in HUVECs, and facilitate vascularized bone regeneration in vivo. Thus, it is a promising bioactive material for oral and maxillofacial regeneration.
RESUMO
Barrier membranes play a prominent role in guided bone regeneration (GBR), and polycaprolactone (PCL) is an attractive biomaterial for the fabrication of barrier membranes. However, these nanofiber membranes (NFMs) require modification to improve their biological activity. PCL-NFMs incorporating with laponite (LAP) achieve biofunctional modification. Decellularized extracellular matrix (dECM) could modulate cell behaviour. The present study combined dECM with PCL/LAP-NFMs to generate a promising strategy for bone tissue regeneration. Bone marrow mesenchymal stem cells (BMSCs) were cultured on NFMs and deposited with an abundant extracellular matrix (ECM), which was subsequently decellularized to obtain dECM-modified PCL/LAP-NFMs (PCL/LAP-dECM-NFMs). The biological functions of the membranes were evaluated by reseeding MC3T3-E1 cells in vitro and transplanting them into rat calvarial defects in vivo. These results indicate that PCL/LAP-dECM-NFMs were successfully constructed. The presence of dECM slightly improved the mechanical properties of the NFMs, which exhibited a Young's modulus of 0.269 MPa, ultimate tensile strength of 2.04 MPa and elongation at break of 51.62 %. In vitro, the PCL/LAP-dECM-NFMs had favourable cytocompatibility, and the enhanced hydrophilicity was conducive to cell adhesion, proliferation, and osteoblast differentiation. PCL/LAP-dECM-NFMs exhibited an excellent bone repair capacity in vivo. Overall, dECM-modified PCL/LAP-NFMs should be promising biomimetic barrier membranes for GBR.
Assuntos
Regeneração Óssea , Matriz Extracelular , Células-Tronco Mesenquimais , Poliésteres , Silicatos , Poliésteres/química , Animais , Silicatos/química , Silicatos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Matriz Extracelular/química , Ratos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Membranas Artificiais , Nanofibras/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biomimética/métodosRESUMO
Aflatoxins belong to a class of mycotoxins, among which aflatoxin B1 (AFB1) has detrimental effects on the health of both animals and humans. It is associated with long-term exposure-induced carcinogenicity, hepatotoxicity, renal toxicity, neurotoxicity, and immunosuppressive properties, resulting in a variety of diseases. The intestine is the first barrier for human exposure to AFB1, but limited investigations have been conducted to clarify the underlying mechanisms of intestinal cytotoxicity. The mechanism of AFB1-induced cytotoxicity was investigated in this study using an integrated approach combining transcriptome, proteome, and metabolome analysis along with molecular dynamics simulation. After exposing SW480 cells to 50 µM AFB1 for 72 h, the transcriptome, proteome, and metabolome exhibited significant enrichment in pathways associated with oxidative stress, fatty acid and lipid metabolism, and glutathione metabolism. The experimental results demonstrated that AFB1 significantly reduces SW480 cells viability, and induces oxidative stress, calcium overload, mitochondrial damage, and lipid metabolism disorders.
Assuntos
Aflatoxina B1 , Sobrevivência Celular , Simulação de Dinâmica Molecular , Estresse Oxidativo , Aflatoxina B1/toxicidade , Humanos , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Proteômica , Metabolismo dos Lipídeos/efeitos dos fármacosRESUMO
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
RESUMO
Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.
Assuntos
Caenorhabditis elegans , Espécies Reativas de Oxigênio , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinoxalinas/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Gelsemium/química , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Lipofuscina/metabolismo , Locomoção/efeitos dos fármacos , Alcaloides IndólicosRESUMO
Background: Mesaconitine (MA), a diester-diterpenoid alkaloid extracted from the medicinal herb Aconitum carmichaelii, is commonly used to treat various diseases. Previous studies have indicated the potent toxicity of aconitum despite its pharmacological activities, with limited understanding of its effects on the nervous system and the underlying mechanisms. Methods: HT22 cells and zebrafish were used to investigate the neurotoxic effects of MA both in vitro and in vivo, employing multi-omics techniques to explore the potential mechanisms of toxicity. Results: Our results demonstrated that treatment with MA induces neurotoxicity in zebrafish and HT22 cells. Subsequent analysis revealed that MA induced oxidative stress, as well as structural and functional damage to mitochondria in HT22 cells, accompanied by an upregulation of mRNA and protein expression related to autophagic and lysosomal pathways. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed a correlation between the expression of autophagy-related genes and N6-methyladenosine (m6A) modification following MA treatment. In addition, we identified METTL14 as a potential regulator of m6A methylation in HT22 cells after exposure to MA. Conclusion: Our study has contributed to a thorough mechanistic elucidation of the neurotoxic effects caused by MA, and has provided valuable insights for optimizing the rational utilization of traditional Chinese medicine formulations containing aconitum in clinical practice.
RESUMO
OBJECTIVE: Current guidelines recommend initiating treatment for nonsevere (NS) hypoglycemia with 15 g carbohydrates (CHO) at 15-min intervals when blood glucose (BG) reaches <70 mg/dL (3.9 mmol/L). Despite this recommendation, NS hypoglycemia management remains challenging for individuals living with type 1 diabetes (T1D). We aimed to assess the efficacy of 15 g CHO at higher BG levels. RESEARCH DESIGN AND METHODS: A total of 29 individuals with T1D participated in an open-label crossover study. After an inpatient subcutaneous insulin-induced decrease in BG in the fasting state, 16 g CHO was administered orally at a plasma glucose (PG) of <70 (3.9), ≤80 (4.5), or ≤90 mg/dL (5.0 mmol/L). The primary outcome was time spent in hypoglycemia (<70 mg/dL) after initial CHO intake. RESULTS: When comparing the <70 (control) with the ≤80 and ≤90 mg/dL treatment groups, 100 vs. 86 (P = 0.1201) vs. 34% (P < 0.0001) of participants reached hypoglycemia, respectively. These hypoglycemic events lasted 26.0 ± 12.6 vs. 17.9 ± 14.7 (P = 0.026) vs. 7.1 ± 11.8 min (P = 0.002), with a PG nadir of 56.57 ± 9.91 vs. 63.60 ± 7.93 (P = 0.008) vs. 73.51 ± 9.37 mg/dL (P = 0.002), respectively. In the control group, 69% of participants required more than one treatment to reach or maintain normoglycemia (≥70 mg/dL), compared with 52% in the ≤80 mg/dL group and 31% in the ≤90 mg/dL group, with no significant rebound hyperglycemia (>180 mg/dL) within the first hour. CONCLUSIONS: For some impending NS hypoglycemia episodes, individuals with TID could benefit from CHO intake at a higher BG level.
Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Hipoglicemia , Humanos , Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemia/tratamento farmacológico , Hipoglicemia/induzido quimicamente , Hipoglicemiantes , InsulinaRESUMO
Ethyl acetate fraction of Toddalia asiatica was fractionated to yield fifteen previously undescribed prenylated coumarins, asiaticasics A-O (1-15) along with nine (16-24) known derivatives. The structures of these undescribed coumarins were established by spectroscopic analysis and reference data. Biological activity evaluation showed that compound 3 with the IC50 value of 2.830 µM and compound 12 with the IC50 value of 0.682 µM owned anti-inflammatory activity by detecting the rate of lactate dehydrogenase release in pyroptosis J774A.1 cells. The results showed that the expression of Caspase-1 and IL-1ß was decreased in a dose-dependent manner in the compound 12 treatment group, suggesting that compound 12 may reduce pyroptosis by inhibiting NLRP3 inflammasome. To further determine that compound 12 treatment can inhibit macrophage pyroptosis, morphological observation was performed and the results were consistent with the bioactivity evaluation.
Assuntos
Cumarínicos , Rutaceae , Cumarínicos/química , Rutaceae/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Raízes de Plantas/químicaRESUMO
BACKGROUND: We aim to investigate which characteristics are associated with having an HbA1c ≤ 7 % (≤53 mmol/mol) among adult automated insulin delivery (AID) users living with type 1 diabetes (T1D). METHODS: Cross-sectional study using data from the T1D BETTER registry. INCLUSION CRITERIA: aged ≥ 18 years old, using a commercial AID system, and with a reported HbA1c range value. Participants were divided into two groups (HbA1c ≤ 7 % group, N = 57; and HbA1c > 7 % group, N = 74). RESULTS: A total of 131 participants were included: 61.8 % females, median age (Q1-Q3) was 43.0 (30.0, 55.0) years, and median duration of T1D was 24.0 (16.0, 36.0) years. Logistic regression analysis suggested that participants with a bachelor's degree or above were more likely (OR 3.04, 95 %CI 1.22, 7.58; P = 0.017) and with a longer duration of pump use were less likely (OR 0.90, 95 %CI 0.84, 0.98; P = 0.009) to report an HbA1c ≤ 7 % when using an AID, after adjusting for age, sex, body mass index, and annual household income. CONCLUSIONS: Our study indicates that among AID users, in order to maximize benefits, additional support is needed for those who do not have a bachelor's degree and/or who have been using an insulin pump for a long time.
Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Feminino , Humanos , Adolescente , Masculino , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Hemoglobinas Glicadas , Estudos Transversais , Insulina/uso terapêutico , Insulina Regular Humana/uso terapêutico , Sistemas de Infusão de Insulina , Hipoglicemiantes/uso terapêuticoRESUMO
OBJECTIVES: Self-management guidelines for nonsevere hypoglycemia (NS-H) in type 1 diabetes recommend 15 g of simple carbohydrates (CHO) at 15-minute intervals. Because automated insulin delivery (AID) preventively reduces or suspends insulin infusion for imminent hypoglycemia, we aimed to determine whether guidelines were excessive during AID. METHODS: This work was a secondary analysis of NS-H episodes during inpatient single-hormone (insulin) or dual-hormone (insulin and glucagon) AID trials with standardized CHO treatment protocols. RESULTS: Forty NS-H episodes occurred: 15 during single-hormone arms (2 trials) and 25 during dual-hormone arms (5 trials). At NS-H treatment T0min, plasma glucose (PG) level was 3.1±0.6 mmol/L, corresponding to a sensor value of 3.6±0.6 mmol/L. Fifteen minutes after CHO consumption, PG increased by 0.9±0.8 mmol/L, recovering 45% of episodes to a safe PG of ≥4.0 mmol/L. With repeated CHO consumption, time to recovery was 21.4±15.7 minutes without rebound hyperglycemia; PG 1 hour after initial CHO was 5.9±2.0 mmol/L. Outcome differences between single-hormone and dual-hormone systems were not statistically significant, except for higher insulin and glucagon levels and less repeated treatments in dual-hormone AID. PG and glucagon levels at T0min were positively associated with increase in PG at T15min and negatively associated with time to recovery. CONCLUSIONS: NS-H self-management CHO 15-g/15-minute guidelines were neither excessive nor optimal during AID. There is a need to examine data with different AID systems to optimize treatment recommendations.
Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adulto , Humanos , Glucagon , Insulina/uso terapêutico , Diabetes Mellitus Tipo 1/terapia , Hipoglicemiantes/uso terapêutico , Glicemia/análise , Sistemas de Infusão de Insulina , Hipoglicemia/tratamento farmacológico , Estudos Cross-OverRESUMO
Aims: To assess the safety and efficacy of two exercise sessions performed 60- and 120-min postmeal with a combination of meal bolus reduction and increased glucose target to the automated insulin delivery (AID) system. Methods: A randomized crossover trial in 13 adult participants (6 females) living with type 1 diabetes using AID (A1c = 7.9% ± 0.6%, age = 53.5 ± 15.5 years, T1D duration = 29.0 ± 16.0 years) was conducted. Just before breakfast, at the time of meal bolus, the AID glucose target was increased from 6 to 9 mmol/L, and a meal bolus reduction of 33% was applied. Two 60-min exercise sessions (60% of VO2 peak) were undertaken either 60 min (60EX) or 120 min (120EX) after a standardized breakfast, followed by a 90-min recovery period. Results: The mean reduction in plasma glucose (PG) levels from prebreakfast to postexercise (-0.8 ± 2.4 mmol/L vs. +0.3 ± 2.3 mmol/L, P = 0.082) were similar between 60EX and 120EX. From prebreakfast to postexercise, PG times in range (3.9-10.0 mmol/L; 63.4% ± 43.1% 60EX vs. 51.9% ± 29.7% 120EX, P = 0.219) and time above range (>10.0 mmol/L; 36.3% ± 43.3% 60EX vs. 48.1% ± 29.7% 120EX, P = 0.211) did not differ between interventions. The 60EX attenuated the glucose rise between premeal to pre-exercise (+1.8 ± 2.1 mmol/L 60EX vs. +3.9 ± 2.1 mmol/L 120EX, P = 0.001). No hypoglycemic events (<3.9 mmol/L) occurred during the study. Conclusion: Premeal announcement combining meal bolus reduction and increased glucose target was effective and safe during 60 min of moderate-intensity aerobic exercise, whether exercise onset was 60 or 120 min following a meal. Clinical Trial Registration No.: NCT04031599.