Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34675080

RESUMO

Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.


Assuntos
Benzoxazinas/metabolismo , Herbivoria , Solo/química , Spodoptera/crescimento & desenvolvimento , Zea mays/metabolismo , Animais , Ecossistema , Homeostase , Ferro/metabolismo , Larva/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Zea mays/parasitologia
2.
Angew Chem Int Ed Engl ; : e202405571, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757486

RESUMO

The rational design of efficient catalysts for uric acid (UA) electrooxidation, as well as the establishment of structure-activity relationships, remains a critical bottleneck in the field of electrochemical sensing. To address these challenges, herein, a hybrid catalyst that integrates carbon-supported Pt nanoparticles and nitrogen-coordinated Mn single atoms (PtNPs/MnNC) is developed. The metal-metal interaction during annealing affords the construction of metallic-bonded Pt-Mn pairs between PtNPs and Mn single atoms, facilitating the electron transfer from PtNPs to the support and thereby optimizing the electronic structure of catalysts. More importantly, experiments and theoretical calculations provide visual proof for the 'incipient hydrous oxide adatom mediator' mechanism for UA oxidation. The Pt-Mn pairs first adsorb OH* to construct the bridged Pt-OH-Mn mediators to serve as a highly active intermediate for N-H bond dissociation and proton transfer. Benefiting from the unique electronic and geometric structure of the catalytic center and reactive intermediates, PtNPs/MnNC exhibits superior electrooxidation performance. The electrochemical sensor based on PtNPs/MnNC enables sensitive detection and discrimination of UA and dopamine in serum samples. This work offers new insights into the construction of novel electrocatalysts for sensitive sensing platforms.

3.
J Am Chem Soc ; 145(21): 11701-11709, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195646

RESUMO

Inorganic solid-state electrolytes (SSEs) have gained significant attention for their potential use in high-energy solid-state batteries. However, there is a lack of understanding of the underlying mechanisms of fast ion conduction in SSEs. Here, we clarify the critical parameters that influence ion conductivity in SSEs through a combined analysis approach that examines several representative SSEs (Li3YCl6, Li3HoCl6, and Li6PS5Cl), which are further verified in the xLiCl-InCl3 system. The scaling analysis on conductivity spectra allowed the decoupled influences of mobile carrier concentration and hopping rate on ionic conductivity. Although the carrier concentration varied with temperature, the change alone cannot lead to the several orders of magnitude difference in conductivity. Instead, the hopping rate and the ionic conductivity present the same trend with the temperature change. Migration entropy, which arises from lattice vibrations of the jumping atoms from the initial sites to the saddle sites, is also proven to play a significant role in fast Li+ migration. The findings suggest that the multiple dependent variables such as the Li+ hopping frequency and migration energy are also responsible for the ionic conduction behavior within SSEs.

4.
Phys Chem Chem Phys ; 25(16): 11216-11226, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039608

RESUMO

Synchrotron spectroscopy and Density Functional Theory (DFT) are combined to develop a new descriptor for the stability of adsorbed chemical intermediates on metal alloy surfaces. This descriptor probes the separation of occupied and unoccupied d electron density in platinum and is related to shifts in Resonant Inelastic X-ray Scattering (RIXS) signals. Simulated and experimental spectroscopy are directly compared to show that the promoter metal identity controls the orbital shifts in platinum electronic structure. The associated RIXS features are correlated with the differences in the band centers of the occupied and unoccupied d bands, providing chemical intuition for the alloy ligand effect and providing a connection to traditional descriptions of chemisorption. The ready accessibility of this descriptor to both DFT calculations and experimental spectroscopy, and its connection to chemisorption, allow for deeper connections between theory and characterization in the discovery of new catalysts.

5.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992047

RESUMO

Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories.


Assuntos
Solanum lycopersicum , Frutas , Agricultura , Algoritmos , Movimento Celular
6.
Chemistry ; 28(37): e202200907, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35508801

RESUMO

A catalytic enantioselective amination of ß-keto esters using (S)-BINOL chiral calcium phosphate has been developed. The reaction produces chiral α-amino-ß-keto ester derivatives in most cases with moderate to excellent enantioselectivities (up to 99 %) and good yields (up to 99 %). This mild synthetic method highlights a low catalyst loading and high catalytic efficiency. When the substrate backbone was changed to 1-tetralone-derived ß-keto esters, unexpectedly high yields of selective redox products were obtained. The practicality of the reaction was realized by a scale-up without any significant loss in the enantioselectivity and yield. Chiral calcium phosphate was successfully recovered and reused for four runs, indicating its stability and high catalytic activity.


Assuntos
Fosfatos de Cálcio , Ésteres , Aminação , Catálise , Estereoisomerismo
7.
J Org Chem ; 87(12): 8203-8212, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35621216

RESUMO

A chiral calcium phosphate-catalyzed enantioselective amination of 2-oxindoles with dibenzyl azodicarboxylate has been developed, affording the products in consistently high yields and excellent enantioselectivity. This synthetic method features low catalyst loading and a high catalytic efficiency. Moreover, the practical value of this process is well demonstrated by a scale-up experiment and a trial of catalyst recovery and reuse.


Assuntos
Fosfatos de Cálcio , Ácidos Carboxílicos , Oxindóis , Aminação , Catálise , Estereoisomerismo
8.
Bioorg Med Chem ; 28(1): 115228, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31813613

RESUMO

BRD4 has emerged as an attractive target for anticancer therapy. However, BRD4 inhibitors treatment leads to BRD4 protein accumulation, together with the reversible nature of inhibitors binding to BRD4, which may limit the efficacy of BRD4 inhibitors. To address these problems, a protein degradation strategy based on the proteolysis targeting chimera (PROTAC) technology has been developed to target BRD4 recently. Herein, we present our design, synthesis and biological evaluation of a new class of PROTAC BRD4 degraders, which were based on a potent dihydroquinazolinone-based BRD4 inhibitor compound 6 and lenalidomide/pomalidomide as ligand for E3 ligase cereblon. Gratifyingly, several compounds showed excellent inhibitory activity against BRD4, and high anti-proliferative potency against human monocyte lymphoma cell line THP-1. Especially, compound 21 (BRD4 BD1, IC50 = 41.8 nM) achieved a submicromolar IC50 value of 0.81 µM in inhibiting the growth of THP-1 cell line, and was 4 times more potent than compound 6. Moreover, the mechanism study established that 21 could effectively induce the degradation of BRD4 protein and suppression of c-Myc. All of these results suggested that 21 was an efficacious BRD4 degrader for further investigation.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Lenalidomida/farmacologia , Quinazolinonas/farmacologia , Talidomida/análogos & derivados , Fatores de Transcrição/antagonistas & inibidores , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HL-60 , Humanos , Lenalidomida/síntese química , Lenalidomida/química , Modelos Moleculares , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Células THP-1 , Talidomida/síntese química , Talidomida/química , Talidomida/farmacologia
9.
Nano Lett ; 19(7): 4380-4383, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31084029

RESUMO

Nonequilibrium intermetallic phases in the nanoscale were realized by diffusion-controlled solid-state transformation, forming SiO2 supported NPs with Pd core and a CsCl type Pd1M1 shell, where M is Sn or Sb. The core-shell geometry is identified from scanning transmission electron microscopy and infrared spectroscopy and the crystal structure is confirmed from in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. The highly symmetric Pd1M1 intermetallic phase has not been reported previously and contains catalytic ensembles with high selectivity toward dehydrogenation of propane. The kinetically limited solid-state reaction is generally applicable to nanoparticle synthesis and could produce materials with desired structures and properties beyond conventional structural limits.

10.
Nano Lett ; 19(8): 5102-5108, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31271283

RESUMO

The design of efficient catalysts capable of delivering high currents at low overpotentials for hydrogen evolution reactions (HERs) is urgently needed to use catalysts in practical applications. Herein, we report platinum (Pt) alloyed with titanium (Ti) from the surface of Ti3C2Tx MXenes to form Pt3Ti intermetallic compound (IMC) nanoparticles (NPs) via in situ coreduction. In situ X-ray absorption spectroscopy (XAS) indicates that Pt undergoes a temperature-dependent transformation from single atoms to intermetallic compounds, and the catalyst reduced at 550 °C exhibits a superior HER performance in acidic media. The Pt/Ti3C2Tx-550 catalyst outperforms commercial Pt/Vulcan and has a small overpotential of 32.7 mV at 10 mA cm-2 and a low Tafel slope of 32.3 mV dec-1. The HER current was normalized by the mass and dispersion of Pt, and the mass activity and specific activity of Pt/Ti3C2Tx-550 are 4.4 and 13 times higher, respectively, than those of Pt/Vulcan at an overpotential of 70 mV. The density functional theory (DFT) calculations suggest that the (111)- and (100)-terminated Pt3Ti nanoparticles exhibit *H binding comparable to Pt(111), while the (110) termination has an *H adsorption that is too exergonic, thus poisoned in the low overpotential region. This work demonstrates the potential of MXenes as platforms for the design of electrocatalysts and may spur future research for other MXene-supported metal catalysts that can be used for a wide range of electrocatalytic reactions.

11.
J Am Chem Soc ; 140(44): 14870-14877, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351929

RESUMO

Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core-shell NPs with atomically precise and high temperature stable Pt3Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy, and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt3Mn subsurface have 98% selectivity to C-H over C-C bond activation during propane dehydrogenation at 550 °C compared with 82% for core-shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt3Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.

12.
Angew Chem Int Ed Engl ; 57(27): 8135-8139, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29688609

RESUMO

Vanadium catalysts offer unique selectivity in olefin polymerization, yet are underutilized industrially owing to their poor stability and productivity. Reported here is the immobilization of vanadium by cation exchange in MFU-4l, thus providing a metal-organic framework (MOF) with vanadium in a molecule-like coordination environment. This material forms a single-site heterogeneous catalyst with methylaluminoxane and provides polyethylene with low polydispersity (PDI≈3) and the highest activity (up to 148 000 h-1 ) reported for a MOF-based polymerization catalyst. Furthermore, polyethylene is obtained as a free-flowing powder as desired industrially. Finally, the catalyst shows good structural integrity and retains polymerization activity for over 24 hours, both promising attributes for the commercialization of vanadium-based polyolefins.

13.
J Am Chem Soc ; 139(36): 12664-12669, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28783434

RESUMO

Molecular catalysts offer tremendous advantages for stereoselective polymerization because their activity and selectivity can be optimized and understood mechanistically using the familiar tools of organometallic chemistry. Yet, this exquisite control over selectivity comes at an operational price that is generally not justifiable for the large-scale manufacture of polyfolefins. In this report, we identify Co-MFU-4l, prepared by cation exchange in a metal-organic framework, as a solid catalyst for the polymerization of 1,3-butadiene with high stereoselectivity (>99% 1,4-cis). To our knowledge, this is the highest stereoselectivity achieved with a heterogeneous catalyst for this transformation. The polymer's low polydispersity (PDI ≈ 2) and the catalyst's ready recovery and low leaching indicate that our material is a structurally resilient single-site heterogeneous catalyst. Further characterization of Co-MFU-4l by X-ray absorption spectroscopy provided evidence for discrete, tris-pyrazolylborate-like coordination of Co(II). With this information, we identify a soluble cobalt complex that mimics the structure and reactivity of Co-MFU-4l, thus providing a well-defined platform for studying the catalytic mechanism in the solution phase. This work underscores the capacity for small molecule-like tunability and mechanistic tractability available to transition metal catalysis in metal-organic frameworks.

14.
Toxicol Appl Pharmacol ; 327: 1-12, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28438631

RESUMO

It is well known that liver cancer is a highly aggressive malignancy with poor prognosis. Andrographolide (AD), a major bioactive component of Andrographis paniculata (Burm. F.), is a potential anti-cancer pharmacophore and the synthesis of AD derivatives with better cytotoxicity to cancer cells has attracted considerable attentions. In the present study, we evaluated the in vivo inhibitory effects of ADN-9, a 15-benzylidene substituted derivative of AD, on the growth and metastasis of murine hepatoma H22 using an orthotopic xenograft model and a subcutaneous xenograft model, and we further studied the anti-angiogenic action and the related mechanisms of ADN-9 in vivo and in vitro. Importantly, ADN-9 remarkably suppressed the growth and metastasis of both orthotopic and subcutaneous xenograft tumors, and the serum AFP level in orthotopic hepatoma-bearing mice treated with 100mg/kg ADN-9 (ig.) was decreased to the normal level. We also found that ADN-9 showed stronger abilities than AD in shrinking tumors, suppressing the invasion and metastasis of H22 cells, decreasing the MVD and promoting tumor cell apoptosis in subcutaneous xenograft of mice. Additionally, ADN-9 exhibited stronger inhibitory activity than AD against the migration and VEGF-induced capillary-like tube formation in HUVECs, which was further proved to be associated with attenuating VEGF/VEGFR2/AKT signaling pathway. The present research provides the first evidence that a 15-substituted AD derivative is more promising than the parent compound in therapeutic treatment of liver cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Andrographis/química , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Circulação Hepática/efeitos dos fármacos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas Experimentais/irrigação sanguínea , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/patologia , Metástase Neoplásica , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Bioorg Chem ; 72: 42-50, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346874

RESUMO

Glycyrrhetic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the roots of the Chinese herb Glycyrrhiza glabra, was reported to be accumulated in hepatocytes due to the extensive distribution of GA receptors in liver. A series of hepatocyte-specific derivatives on the basis of anetholtrithione and glycyrrhizic were designed and synthesized. The potential beneficial effect was evaluated in carbon tetrachloride (CCl4)-induced liver injury model. In addition, the hepatoprotective activity of these derivatives was assessed by measuring levels of serum marker enzymes, including serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and the ratio of GSH to GSSG. Gratifyingly, compounds 5a-c (100mg/kg, p.o.) markedly prevented CCl4-induced elevation of levels of serum GPT, GOT. A comparative histopathological study of liver exhibited almost a normal liver lobular architecture and cell structure of the livers, as compared to CCl4-treated group. These findings were confirmed with the histopathological observations, where hepatocyte-specific glycyrrhetic acid derivatives 5a-c were capable of reversing the toxic effects of CCl4 on hepatocytes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ácido Glicirretínico/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ácido Glicirretínico/síntese química , Ácido Glicirretínico/química , Fígado/patologia , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Biochem Biophys Res Commun ; 473(1): 54-60, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26995089

RESUMO

A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas.


Assuntos
Enzimas Imobilizadas/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/química , Citocromos/química , Emulsões , Glutaral/análogos & derivados , Glutaral/química , Ácido Clorídrico/química , Microscopia Eletrônica de Varredura , Polimerização , Polímeros/química , Pressão , Proteínas/química , Reprodutibilidade dos Testes , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização por Electrospray , Estirenos/química , Espectrometria de Massas em Tandem , Tripsina/química , Compostos de Vinila/química
17.
Langmuir ; 32(15): 3637-44, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27023433

RESUMO

Polyelectrolyte multilayer (PEM) capsules are promising candidates for many kinds of cancer detection and treatment but are usually intended to deliver cargo to specific sites or to destroy cancer cells based on photothermal effects from the outside. In this publication we prove that it is possible to kill cancer cells from the inside based on phagocytosed PEM capsules. In addition we show how to open the cells and bring the PEM capsules to the surface of cancer cells based on photothermal effects and rapid evaporation of water. Diffusion-based temperature determinations of the photothermal effect up to the evaporation temperature of water are presented.


Assuntos
Antineoplásicos/química , Membrana Celular/química , Ouro/química , Nanopartículas Metálicas/química , Monócitos/química , Polieletrólitos/química , Adsorção , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Cápsulas , Carbocianinas/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/efeitos da radiação , Fagocitose , Fototerapia , Poliaminas/química , Poliestirenos/química , Propídio/química
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2134-8, 2016 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30035905

RESUMO

Divertor impurity injection on Tokamak is the most important means to achieve divertor impurity screening efficiency. In this paper, a fast-response extreme-ultraviolet (EUV) spectrometer is used to monitor the Ar emission lines during the EAST(Experimental Advanced Superconducting Tokamak)divertor Ar injection experiment. Based on the NIST(National Institute of Standards and Technology)atomic spectrum database, the emission lines from different ionized Ar ions in 2~50 nm wavelength range, e.g. Ar Ⅳ, Ar Ⅳ-Ⅺ and Ar ⅩⅣ-ⅩⅥ, are being identified. Ar ⅩⅥ 35.39 nm and Ar Ⅳ 44.22 nm with the ionization energy of 918.4 and 59.6 eV respectively are being monitored during the experiment with Ar puffing to observe the behavior of Ar impurities in different regions in plasmasimultaneously. The preliminary analysis on divertor impurity screening efficiency is carried outwith the time evolution of intensities of two Ar emission lines. The results of experiment puffing from the same gas puffing inlet (e. g. from lower outer target inlet) and withdifferent plasma configurations (e. g. lower single null, upper single null) show that the screening effect on the impurity injected from the divertor region is better thanfrom the main plasma region; the screening effect of lower divertor and particle pumping by internal cryopump installed in lower divertor is stronger than upper divertor.

19.
J Environ Sci (China) ; 31: 240-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968280

RESUMO

A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O.


Assuntos
Amônia/química , Cério/química , Compostos de Manganês/química , Nióbio/química , Óxidos/química , Vapor/análise , Catálise , Nitratos/química , Óxido Nítrico/química , Análise Espectral/métodos , Fatores de Tempo , Poluentes Químicos da Água/química , Difração de Raios X
20.
Anal Chim Acta ; 1296: 342335, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401942

RESUMO

In this study, three small peptoids with different structures, named Sil-peptoids, were developed to improve the separation selectivity of zwitterion-exchange/reversed-phase mixed-mode chromatography stationary phases for multi-component complex drugs. Nonpolar, amphoteric, and alkaline drugs were used as test samples to demonstrate their retention behaviors in reversed-phase, ionic, and mixed-mode interactions. It was observed that different carboxyl anions in the small peptoids of the Sil-peptoids had vast differences in their stereo-selectivity. The stereo-selectivity and the influence of Sil-peptoids on the retention behavior of complex drugs and their interaction mechanism for the drug molecules were effectively evaluated through the combination of chromatographic analysis and molecular modeling. Finally, a mixture of drugs consisting of two polar and six non-polar drugs was used to obtain a separation effect with a resolution >1.5. Two other groups of polar antibiotics were used to verify the separation ability of the Sil-peptoids. The results indicated that the Sil-peptoids could separate multiple substances simultaneously. These novel stationary phases can be applied to the analysis of complex multi-component drugs.


Assuntos
Peptoides , Cromatografia , Ânions
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA