Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(6): 352, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822874

RESUMO

BACKGROUND: The relationship between tooth colour and individual satisfaction in oral aesthetics has long been a topic of interest. In this study, we utilized the fuzzy analytic hierarchy process (FAHP) to investigate the impacts of sex and age on tooth colour preference. The findings of this study should provide a scientific basis for oral aesthetic practice. METHODS: In the current study, a random selection method was employed, and a survey was completed by 120 patients. To obtain tooth colour data, standard tooth colour charts were used. Smile photos were taken as template images using a single-lens reflex camera. The FAHP was utilized to conduct a weight analysis of tooth colour preferences among patients of different sexes and age groups. RESULTS: There were significant differences in tooth colour preference based on sex and age. Men tend to prefer the B1 colour, while women may prioritize the aesthetic effects of other colours. Additionally, as patients age, their preferences for tooth colour become more diverse. These findings offer valuable insights for oral aesthetics practitioners, enabling them to better address the aesthetic needs of patients across different sexes and ages. This knowledge can aid in the development of more personalized treatment plans that align with patients' expectations. CONCLUSION: In this study, we utilized scientific analysis methods to quantify the popularity of different tooth colours among various groups of people. By doing so, we established a scientific foundation for clinical practice. The findings of this study offer valuable insights for oral aesthetic research, enhancing our understanding of tooth colour. Additionally, these findings have practical applications in the field of oral medicine, potentially improving patients' quality of life and overall oral health.


Assuntos
Estética Dentária , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Fatores Sexuais , Fatores Etários , Cor , Inquéritos e Questionários , Sorriso , Idoso , Adolescente , Fotografia Dentária , Dente , Preferência do Paciente
2.
ACS Infect Dis ; 10(2): 638-649, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38258383

RESUMO

Enterococcus faecalis and Staphylococcus aureus exhibit robust biofilm formation capabilities, the formation of which is closely linked to pathogenicity and drug resistance, thereby resulting in host infection and treatment failure. o-Phenanthroline monohydrate (o-Phen) and its derivatives demonstrate a wide range of antibacterial and antifungal activities. In this study, we aimed to explore the antibiofilm activity of o-Phen to E. faecalis and S. aureus and provide insights into the molecular mechanisms for combating biofilm resistance. We demonstrated that o-Phen possesses significant antibacterial and antibiofilm properties against E. faecalis and S. aureus, inducing alterations in bacterial morphology, compromising cell membrane integrity, and exhibiting synergistic effects with ß-lactam antibiotics at sub-MIC concentrations. The adhesion ability and automatic condensation capacity of, and synthesis of, extracellular polymers by E. faecalis cells were reduced by o-Phen, resulting in the inhibition of biofilm formation. Importantly, transcriptome analysis revealed 354 upregulated and 456 downregulated genes in o-Phen-treated E. faecalis. Differentially expressed genes were enriched in 11 metabolism-related pathways, including amino acid metabolism, pyrimidine metabolism, and glycolysis/gluconeogenesis. Moreover, the oppA, CeuA, and ZnuB genes involved in the ABC transport system, and the PBP1A penicillin-binding protein-coding genes sarA and mrcA were significantly downregulated. The multidrug efflux pump system and membrane permeability genes mdtG and hlyD, and bacterial adhesion-related genes, including adcA and fss2 were also downregulated, while mraZ and ASP23 were upregulated. Thus, o-Phen is anticipated to be an effective alternative drug for the treatment of E. faecalis and S. aureus biofilm-associated infections.


Assuntos
Enterococcus faecalis , Fenantrolinas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Biofilmes
3.
Microbiol Spectr ; : e0224922, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847574

RESUMO

Separation processes using immunomagnetic beads (IMBs) are advantageous for the rapid detection of Staphylococcus aureus (S. aureus). Herein, a novel method, based on immunomagnetic separation using IMBs and recombinase polymerase amplification (RPA), was employed to detect S. aureus strains in milk and pork. IMBs were formed by the carbon diimide method using rabbit anti-S. aureus polyclonal antibodies and superparamagnetic carboxyl-Fe3O4 MBs. The average capture efficiency for 2.5 to 2.5 × 105 (CFU)/mL gradient dilution of S. aureus with 6 mg of IMBs within 60 min were a range of 62.74 to 92.75%. The detection sensitivity of the IMBs-RPA method in artificially contaminated samples was 2.5 × 101 CFU/mL. The entire detection process was completed within 2.5 h, including bacteria capture, DNA extraction, amplification, and electrophoresis. Among 20 actual samples, one case of raw milk sample and two cases of pork samples were tested positive using the established IMBs-RPA method, which were verified by the standard S. aureus inspection procedure. Therefore, the novel method shows potential for food safety supervision owing to its short detection time, higher sensitivity, and high specificity. IMPORTANCE Our study established IMBs-RPA method, which simplified the steps of bacteria separation, shortened the detection time, and realized the convenient detection of S. aureus in milk and pork samples. IMBs-RPA method was also suitable for the detection of other pathogens, providing a new method for food safety monitoring and a favorable basis for rapid and early diagnosis of diseases.

4.
Int J Antimicrob Agents ; 62(3): 106923, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37433388

RESUMO

OBJECTIVES: Escherichia coli is an important pathogen responsible for numerous cases of diarrhoea worldwide. The bioreductive agent tirapazamine (TPZ), which was clinically used to treat various types of cancers, has obvious antibacterial activity against E. coli strains. In the present study, we aimed to evaluate the protective therapeutic effects of TPZ in E. coli-infected mice and provide insights into its antimicrobial action mechanism. METHODS: The MIC and MBC tests, drug sensitivity test, crystal violet assay and proteomic analysis were used to detect the in vitro antibacterial activity of TPZ. The clinical symptoms of infected mice, tissue bacteria load, histopathological features and gut microbiota changes were regarded as indicators to evaluation the efficacy of TPZ in vivo. RESULTS: Interestingly, TPZ-induced the reversal of drug resistance in E. coli by regulating the expression of resistance-related genes, which may have an auxiliary role in the clinical treatment of drug-resistant bacterial infections. More importantly, the proteomics analysis showed that TPZ upregulated 53 proteins and downregulated 47 proteins in E. coli. Among these, the bacterial defence response-related proteins colicin M and colicin B, SOS response-related proteins RecA, UvrABC system protein A, and Holliday junction ATP-dependent DNA helicase RuvB were all significantly upregulated. The quorum sensing-related protein glutamate decarboxylase, ABC transporter-related protein glycerol-3-phosphate transporter polar-binding protein, and ABC transporter polar-binding protein YtfQ were significantly downregulated. The oxidoreductase activity-related proteins pyridine nucleotide-disulfide oxidoreductase, glutaredoxin 2 (Grx2), NAD(+)-dependent aldehyde reductase, and acetaldehyde dehydrogenase, which participate in the elimination of harmful oxygen free radicals in the oxidation-reduction process pathway, were also significantly downregulated. Moreover, TPZ improved the survival rate of infected mice; significantly reduced the bacteria load in the liver, spleen, and colon; and alleviated E. coli-associated pathological damages. The gut microbiota also changed in TPZ-treated mice, and these genera were considerably differentiated: Candidatus Arthromitus, Eubacterium coprostanoligenes group, Prevotellaceae UCG-001, Actinospica, and Bifidobacterium. CONCLUSIONS: TPZ may represent an effective and promising lead molecule for the development of antimicrobial agents for the treatment of E. coli infections.


Assuntos
Antineoplásicos , Escherichia coli , Animais , Camundongos , Tirapazamina , Antineoplásicos/farmacologia , Triazinas/farmacologia , Triazinas/uso terapêutico , Proteômica , Oxirredutases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA