Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Sci Technol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120070

RESUMO

The tire rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone product (6PPDQ) are prevalent emerging contaminants, yet their biotransformation profiles remain poorly understood, hampering the assessment of environmental and health risks. This study investigated the phase-I metabolism of 6PPD and 6PPDQ across aquatic and mammalian species through in vitro liver microsome (LM) incubations and in silico simulations. A total of 40 metabolites from seven pathways were identified using the highly sensitive nano-electrospray ionization mass spectrometry. Notably, 6PPDQ was consistently detected as a 6PPD metabolite with an approximate 2% yield, highlighting biotransformation as a neglected indirect exposure pathway for 6PPDQ in organisms. 6PPDQ was calculated to form through a facile two-step phenyl hydroxylation of 6PPD, catalyzed by cytochrome P450 enzymes. Distinct species-specific metabolic kinetics were observed, with fish LM demonstrating retarded biotransformation rates for 6PPD and 6PPDQ compared to mammalian LM, suggesting the vulnerability of aquatic vertebrates to these contaminants. Intriguingly, two novel coupled metabolites were identified for 6PPD, which were predicted to exhibit elevated toxicity compared to 6PPDQ and result from C-N oxidative coupling by P450s. These unveiled metabolic profiles offer valuable insights for the risk assessment of 6PPD and 6PPDQ, which may inform future studies and regulatory actions.

2.
Food Chem ; 460(Pt 3): 140690, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106752

RESUMO

The misuse of tetracyclines in livestock production poses significant health risks. Thus, establishing convenient detection methods to replace complex laboratory tests for food safety is crucial. In this study, a heterostructure Zn-BTC/IRMOF-3 (denoted as ZBI) asynchronous response fluorescence sensor was developed for the qualitative and quantitative detection of tetracyclines in foods. The ZBI solution exhibited blue fluorescence under UV excitation; upon the introduction of tetracyclines, ZBI selectively recognized the tetracycline molecules through electron transfer, π-π stacking, and chelation, resulting in blue fluorescence quenching and green fluorescence enhancement. The ZBI sensor for tetracycline detection achieved recovery rates ranging from 93.91 to 111.91% in food samples, with a detection limit of as low as 0.086 µmol/L. Lastly, a portable sensing device using support vector classifier was constructed for detecting tetracyclines in real-life scenarios. Our findings introduce a new approach for fabricating fluorescence sensors and offer a novel method for detecting tetracyclines.


Assuntos
Contaminação de Alimentos , Estruturas Metalorgânicas , Máquina de Vetores de Suporte , Tetraciclinas , Tetraciclinas/análise , Contaminação de Alimentos/análise , Estruturas Metalorgânicas/química , Animais , Colorimetria/instrumentação , Colorimetria/métodos , Fluorescência , Espectrometria de Fluorescência/métodos , Espectrometria de Fluorescência/instrumentação , Limite de Detecção , Antibacterianos/análise
3.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986623

RESUMO

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Via de Sinalização Wnt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Bancos de Espécimes Biológicos , Heterogeneidade Genética , Dano ao DNA/genética , Interferons/metabolismo , Interferons/genética , Linhagem da Célula/genética
4.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565644

RESUMO

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Assuntos
Carcinoma Endometrioide , Hiperplasia Endometrial , Neoplasias do Endométrio , Preservação da Fertilidade , Proteogenômica , Humanos , Feminino , Progestinas/uso terapêutico , Antineoplásicos Hormonais , Hiperplasia Endometrial/tratamento farmacológico , Preservação da Fertilidade/métodos , Estudos Retrospectivos , Carcinoma Endometrioide/tratamento farmacológico , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia
5.
IEEE/ACM Trans Comput Biol Bioinform ; 20(3): 1864-1875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36331640

RESUMO

Retrieval Question Answering (ReQA) is an essential mechanism of information sharing which aims to find the answer to a posed question from large-scale candidates. Currently, the most efficient solution is Dual-Encoder which has shown great potential in the general domain, while it still lacks research on biomedical ReQA. Obtaining a robust Dual-Encoder from biomedical datasets is challenging, as scarce annotated data are not enough to sufficiently train the model which results in over-fitting problems. In this work, we first build ReQA BioASQ datasets for retrieving answers to biomedical questions, which can facilitate the corresponding research. On that basis, we propose a framework to solve the over-fitting issue for robust biomedical answer retrieval. Under the proposed framework, we first pre-train Dual-Encoder on natural language inference (NLI) task before the training on biomedical ReQA, where we appropriately change the pre-training objective of NLI to improve the consistency between NLI and biomedical ReQA, which significantly improve the transferability. Moreover, to eliminate the feature redundancies of Dual-Encoder, consistent post-whitening is proposed to conduct decorrelation on the training and trained sentence embeddings. With extensive experiments, the proposed framework achieves promising results and exhibits significant improvement compared with various competitive methods.


Assuntos
Armazenamento e Recuperação da Informação , Armazenamento e Recuperação da Informação/métodos , Aprendizado de Máquina , Curadoria de Dados , Inteligência Artificial
6.
Nat Genet ; 55(12): 2175-2188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985817

RESUMO

Cervical squamous cell carcinoma (CSCC) exhibits a limited response to immune-checkpoint blockade. Here we conducted a multiomic analysis encompassing single-cell RNA sequencing, spatial transcriptomics and spatial proteomics, combined with genetic and pharmacological perturbations to systematically develop a high-resolution and spatially resolved map of intratumoral expression heterogeneity in CSCC. Three tumor states (epithelial-cytokeratin, epithelial-immune (Epi-Imm) and epithelial senescence), recapitulating different stages of squamous differentiation, showed distinct tumor immune microenvironments. Bidirectional interactions between epithelial-cytokeratin malignant cells and immunosuppressive cancer-associated fibroblasts form an immune exclusionary microenvironment through transforming growth factor ß pathway signaling mediated by FABP5. In Epi-Imm tumors, malignant cells interact with natural killer and T cells through interferon signaling. Preliminary analysis of samples from a cervical cancer clinical trial ( NCT04516616 ) demonstrated neoadjuvant chemotherapy induces a state transition to Epi-Imm, which correlates with pathological complete remission following treatment with immune-checkpoint blockade. These findings deepen the understanding of cellular state diversity in CSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias do Colo do Útero/genética , Inibidores de Checkpoint Imunológico , Relevância Clínica , Ecossistema , Multiômica , Queratinas/metabolismo , Queratinas/uso terapêutico , Microambiente Tumoral/genética , Proteínas de Ligação a Ácido Graxo/uso terapêutico
7.
Emerg Med Int ; 2022: 6151206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498377

RESUMO

Objective: Pretreatment with hydrocortisone (prehydrocortisone) has been used to protect against adverse drug reactions (ADRs) following antivenom administration after snakebite. However, controversial results have been reported in studies evaluating its efficacy. Herein, we conducted a meta-analysis to evaluate the effect of prehydrocortisone on the risk of ADRs. Methods: We conducted a systematic search of PubMed, Embase, and Cochrane for relevant studies on the literature published up to December 6, 2020, with no language restrictions. Premedications, including hydrocortisone with or without other drugs, were compared with placebo or no premedication. Our primary end point was the risk of ADRs, which was reported as the number of patients who developed ADRs divided by the total number of snakebite patients administered with antivenom separately for the prehydrocortisone and control groups for each study. We evaluated pooled data using of a random-effects model. Results: Among 831 identified studies, 4 were eligible and included in our analysis (N = 1348 participants). Upon combining all eight comparisons from the four selected studies, the overall pooled odds ratio (OR) for ADRs was 0.47 (95% CI 0.19, 1.17; p=0.11; I 2 = 68%). When the analysis was restricted to only articles using hydrocortisone with other drugs, the pooled OR was 0.19 (95% CI 0.05, 0.75; p=0.02; I 2 = 55%). The result was not statistically significant when the analysis was restricted to studies using prehydrocortisone alone, or randomized controlled designs, or cohorts. Our study was limited by heterogeneity, quality, and a paucity of data. Conclusions: The findings in this study revealed that prehydrocortisone alone was ineffective. However, the substantial beneficial effect of prehydrocortisone combinations with premedications (injectable antihistamines or adrenaline) used against ADRs cannot be excluded. Therefore, the use of prehydrocortisone combinations with premedications (injectable antihistamines or adrenaline) as a prophylaxis may reduce the ADRs to antivenom.

8.
J Oncol ; 2022: 4886907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478746

RESUMO

Erythropoietin-producing hepatoma receptor A2 (EphA2), receptor tyrosine kinase, the most widespread member of the largest receptor tyrosine kinase family, plays a critical role in physiological and pathological conditions. In recent years, the role of EphA2 in the occurrence and development of cancer has become a research hotspot and is considered a promising potential target. Our previous studies have shown that EphA2 has an indisputable cancer-promoting role in cervical cancer, but its related mechanism requires further research. In this study, high-throughput sequencing was performed on EphA2 knockdown cervical cancer cells and the control group. An analysis of differentially expressed genes revealed that EphA2 may exert its cancer-promoting effect through C-X-C motif chemokine ligand 11 (CXCL11). In addition, we found that EphA2 could further regulate programmed cell death ligand 1 (PD-L1) through CXCL11. This has also been further demonstrated in in vivo experiments. Our study demonstrated that EphA2 plays a tumor-promoting role in cervical carcinoma through the CXCL11/PD-L1 pathway, providing new guidance for the targeted therapy and combination therapy of cervical carcinoma.

9.
J Inflamm Res ; 14: 829-841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737824

RESUMO

OBJECTIVE: Sepsis is a disease associated with high mortality. We performed bioinformatic analysis to identify key biomarkers associated with sepsis and septic shock. METHODS: The top 20% of genes showing the greatest variance between sepsis and controls in the GSE13904 dataset (children) were screened by co-expression network analysis. The differentially expressed genes (DEGs) were identified through analyzing differential gene expression between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree of connectivity, and the top 100 sepsis-associated genes were identified based on the area under the receiver operating characteristic curve (AUC). In addition, we evaluated differences in immune cell infiltration between sepsis patients and controls in children (GSE13904, GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA methylation levels between sepsis patients and controls in GSE138074 (adults). RESULTS: The common genes were associated mainly with up-regulated inflammatory and metabolic responses, as well as down-regulated immune responses. Sepsis patients showed lower infiltration by most types of immune cells. Genes in the PPI network with AUC values greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively dysregulated across controls, sepsis patients and patients with septic shock. In addition, the expression of MAPK14, FGR, and CD247 was modified by methylation. CONCLUSION: This study identified several potential diagnostic genes and inflammatory and metabolic responses mechanisms associated with the development of sepsis.

10.
Drug Des Devel Ther ; 15: 1797-1810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958857

RESUMO

PURPOSE: OSU-03012 is a celecoxib derivative lacking cyclooxygenase-2 inhibitory activity and a potent PDK1 inhibitor which has been shown to inhibit tumor growth in various ways. However, the role of OSU-03012 in endometrial carcinoma (EC) in which the PI3K/Akt signaling pathway highly activated has not been studied. Here, we determined the potency of OSU-03012 in suppressing EC progression in vitro and in vivo, and studied the underlined mechanisms. METHODS: The human EC Ishikawa and HEC-1A cells were used as the in vitro models. CCK8 assay and flow cytometry were conducted to evaluate cell proliferation, cell cycle progression, and apoptosis. The metastatic ability was evaluated using the transwell migration assay. The Ishikawa xenograft tumor model was used to study the inhibitory effects of OSU-03012 on EC growth in vivo. Western blot analysis was performed to evaluate expressions of the cell cycle and apoptosis associated proteins. RESULTS: OSU-03012 could inhibit the progression of EC both in vitro and in vivo by disrupting Akt signaling. It reduced the metastatic ability of EC, led to G2/M cell cycle arrest and induced apoptosis via the mitochondrial apoptosis pathway. CONCLUSION: Our data indicated that OSU-03012 could inhibit the progression of EC in vitro and in vivo. It can potentially be used as the targeted drug for the treatment of EC by inhibiting Akt signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Células Tumorais Cultivadas
11.
J Inflamm Res ; 14: 2353-2361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103966

RESUMO

PURPOSE: Acute respiratory distress syndrome (ARDS) is a rapidly progressive diffuse lung injury that is characterized by high mortality and acute onset. The pathological mechanisms of ARDS are still unclear. But alveolar macrophages have been shown to play an important role in inflammatory responses during ARDS. We aimed to find the biomarkers for ARDS for early diagnosis, to give ARDS patients timely treatment. METHODS: Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) and screened for differentially expressed genes (DEGs). The common upregulated genes in all the datasets were defined as circulating ARDS alveolar macrophage-related genes (cARDSAMGs). We performed a functional enrichment analysis to explore potential biological functions of cARDSAMGs, and we built protein-protein interaction networks. Gene set variation analysis (GSVA) was used to calculate the core gene set variation analysis (CGSVA) score for individual samples. Receiver operating characteristic (ROC) curve analysis was applied on the CGSVA score to evaluate its ability for diagnosis of ARDS. RESULTS: A total of 60 genes were upregulated in all ARDS datasets and were therefore denominated as cARDSAMGs. The cARDSAMGs were significantly involved in multiple inflammation-, immunity- and phagocytosis-related biological processes and pathways. In the protein-protein interaction network associated with host responses to ADRS, eight genes were identified as a core gene set: PTCRA, JAG1, C1QB, ADAM17, C1QA, MMP9, VSIG4 and TNFAIP3. ROC curve analysis showed that the CGSVA score may be considered as a biomarker for ARDS: it was significantly higher in patients with ARDS than those in healthy in both alveolar lavage fluid and whole blood. CONCLUSION: The ARDS alveolar macrophage-related CGSVA score may be useful as a biomarker for ARDS.

12.
Onco Targets Ther ; 14: 3929-3942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234461

RESUMO

PURPOSE: Endometrial cancer (EC) is the sixth most common cancer in women and its incidence and mortality have been rising over the last decades. The latest research indicates that FABP4 plays a significant role in multiple types of cancer. But few studies were focused on EC. The aim of this article is to investigate whether FABP4 can suppress tumor growth and metastasis of EC via PI3K/Akt pathway to provide a novel therapeutic target for the treatment of EC. MATERIALS AND METHODS: FABP4 mRNA levels of EC were analysed through The Cancer Genome Atlas database (TCGA), and expression of FABP4 in EC cancer tissues was determined by immunohistochemistry (IHC) assays. Stable overexpressing cell lines were established using lentivirus infection to analyze the biological function of FABP4 in vitro. CCK8 assay and colony formation assay were performed to assess cell proliferation ability. Wound healing assay and transwell were performed to analyse migration and invasion of cells. The subcutaneous xenograft mouse model was used to evaluate tumor growth in vivo. Additionally, all protein levels were detected by Western blotting assay. RESULTS: We found that the expression of the FABP4 mRNA was decreased in tumor samples compared to normal tissue according to TCGA database analysis. Subsequent experimental mRNA and protein expression analysis confirmed that FABP4 expression was lower in EC tissue than normal endometrial tissue. In addition, we found overexpression of FABP4 inhibited the proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Further functional and mechanistic analysis of FABP4 demonstrated that its function is mediated by restraining the phosphorylation of PI3K/Akt signaling pathway. CONCLUSION: Our studies shed light for the first time about the functional role of FABP4 in EC and provide a novel biomarker for EC as well as a therapeutic target for the therapy of EC.

13.
Int J Gen Med ; 14: 243-253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33536775

RESUMO

PURPOSE: Early diagnosis of sepsis-induced acute respiratory distress syndrome (ARDS) is critical for effective treatment. We aimed to identify early stage biomarkers. MATERIALS AND METHODS: Differentially expressed genes were identified in whole blood samples from patients with sepsis or ARDS based on the Gene Expression Omnibus (GEO) datasets GSE32707, GSE54514 and GSE10361. Functional enrichment analysis explored the biological characteristics of differentially expressed genes. Genes with high functional connectivity based on a protein-protein interaction network were marked as hub genes, which were validated using the GEO dataset GSE76293, and a gene set variation analysis index (GSVA) was assigned. Diagnostic and predictive ability of the hub genes were assessed by receiver operating characteristic (ROC) curve analysis. DNA methylation levels of hub genes were quantified using the GEO dataset GSE67530. RESULTS: Forty-one differentially expressed genes were shared between sepsis-specific and ARDS-specific datasets. MAP2K2 and IRF7 functional activity was highly connected in sepsis-induced ARDS. Hub genes included RETN, MVP, DEFA4, CTSG, AZU1, FMNL1, RBBP7, POLD4, RIN3, IRF7. ROC curve analysis of the hub gene GSVA index showed good diagnostic ability in sepsis or ARDS. Among genes related to sepsis-induced ARDS, 17 were differentially methylated. Principal component analysis and heatmaps indicated that gene methylation patterns differed significantly between ARDS patients and controls. CONCLUSION: We identified a genetic profile specific to early-stage sepsis-induced ARDS. The abnormal expression of these genes may be caused by hypomethylation, which may serve as a biomarker for early diagnosis of ARDS.

14.
Front Pharmacol ; 12: 785981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153749

RESUMO

Kinesin family member 2C (KIF2C) is known as an oncogenic gene to regulate tumor progression and metastasis. However, its pan-cancer analysis has not been reported. In this study, we comprehensively analyzed the characteristics of KIF2C in various cancers. We found that KIF2C was highly expressed and corresponded to a poor prognosis in various cancers. We also found a significant correlation between KIF2C and clinicopathological characteristics, particularly in cervical cancer, which is the most common gynecological malignancy and is the second leading cause of cancer-related deaths among women worldwide. KIF2C mutation is strongly associated with the survival rate of cervical cancer, and KIF2C expression was significantly upregulated in cervical cancer tissues and cervical cancer cells. Moreover, KIF2C promoted cervical cancer cells proliferation, invasion, and migration in vitro and as well increased tumor growth in vivo. KIF2C knockdown promotes the activation of the p53 signaling pathway by regulating the expression of related proteins. The rescue assay with KIF2C and p53 double knockdown partially reversed the inhibitory influence of KIF2C silencing on cervical cancer processes. In summary, our study provided a relatively comprehensive description of KIF2C as an oncogenic gene and suggested KIF2C as a therapeutic target for cervical cancer.

15.
Environ Sci Pollut Res Int ; 27(28): 35381-35391, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594432

RESUMO

Single-stage autotrophic nitrogen removal offers advantages of low energy and carbon consumptions. Based on previous work about a novel composite membrane aerated biofilm (CMAB), two microbial entrapping patterns (mixed and stratified patterns) were evaluated for their applicability to artificially regulate the spatial distribution of distinct microbial aggregates for single-stage autotrophic nitrogen removal. Experimental results showed that the stratified pattern caused little accumulation of NO2- and NO3-, which leads to a superior nitrogen removal performance compared with the mixed pattern. Candidatus Kuenenia was found to be the major anammox bacterium in the gel film of the mixed pattern and the outer film of the stratified pattern. In contrast, Nitrosomonas, as a representative genus of ammonia-oxidizing bacteria, was substantially enriched in the inner film of the stratified pattern and the gel film of the mixed pattern. Finally, modeling results further confirmed the advantages of the stratified pattern with respect to the formation of rational microbial and nutrient profiles in gel films. The ratio of partial nitrification and anammox film thicknesses should remain below 3:2 to obtain a high fraction of anammox bacteria and to avoid NO2- accumulation. Increasing O2 surface loading does not affect microbial profiles, but can greatly promote the TN removal performance only in the stratified pattern. Overall, the stratified pattern should be employed to achieve optimal microbial profiles and nitrogen removal efficiency.


Assuntos
Desnitrificação , Nitrogênio , Biofilmes , Reatores Biológicos , Nitrificação , Oxirredução , Águas Residuárias
16.
Curr Drug Targets ; 21(11): 1047-1055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32107990

RESUMO

BACKGROUND: Endometriosis (EMS) is a gynecological disease defined by the translocation and growth of endometrial tissue in other tissues or organs outside the uterus. Its clinical manifestations are dysmenorrhea, irregular menstruation, and even infertility. Although EMS is a benign disease, it has the characteristics of malignant tumor and the potential of malignant transformation. Recent studies have found that EMS may involve epigenetic changes and that various epigenetic aberrations, especially aberrant DNA methylation may play an essential role in the pathogenesis of EMS. Previous studies have elucidated the epigenetic regulators of EMS and reported variations in epigenetic patterns of genes known to be associated with abnormal hormonal, immune, and inflammatory states of EMS. With the development of high-throughput sequencing and other biomolecular technologies, we have a better understanding of genome-wide methylation in EMS. OBJECTIVE: This article will discuss the potentiality of targeting DNA methylation as the therapeutic approach for EMS. RESULTS: This article reviews the role of DNA methylation in the pathophysiology of EMS and provides insight into a novel therapeutic approach for EMS by targeting DNA methylation modifiers. We also review the current progress in using DNA methylation inhibitors in EMS therapy and the potential promise and challenges ahead. CONCLUSION: Aberrant DNA methylation plays an essential role in the pathogenesis of EMS and epigenetic agents targeting DNA methyltransferases are expected to be the theoretical basis for the new treatment of EMS.


Assuntos
Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Endometriose/tratamento farmacológico , Endometriose/genética , Epigênese Genética/efeitos dos fármacos , Ilhas de CpG/genética , Endometriose/diagnóstico , Feminino , Humanos , Regiões Promotoras Genéticas
17.
Am J Transl Res ; 12(6): 2749-2759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655806

RESUMO

Accurate diagnosis of sepsis remains challenging, new markers or combinations of markers are urgently needed. In the present study, we screened differentially expressed genes (DEGs) between sepsis and non-sepsis blood samples across three previously published gene expression data sets. Common upregulated and downregulated DEGs were ranked according to their average functional similarity. The ten genes (OLFM4, ORM1, CEP55, S100A12, S100P, LRG1, CEACAM8, MS4A4A, PLSCR1, and IL1R2) with the largest average functional similarity among the common upregulated genes and another ten genes (THEMIS, IL2RB, CD2, IL7R, CD3E, KLRB1, PVRIG, CCRR3, TGFBR3, and PLEKHA1) with the largest average functional similarity among the common downregulated genes were separately identified as the upregulated crucial gene set and the downregulated crucial gene set. Gene set variation analysis (GSVA) was used to obtain the GSVA index of each sample against the two crucial gene sets. Both the two crucial GSVA indexes may be robust markers for sepsis with high area under ROC curve. The diagnostic utility of the upregulated GSVA index was validated in another independent data set. Functional analyses revealed several sepsis-related pathways. In conclusion, we proposed two sepsis-related gene sets across multiple data sets and created two GSVA indexes with promising diagnostic value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA