Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Soft Matter ; 18(47): 9076-9085, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36421000

RESUMO

A purely mechanical-driven haptic feedback system was developed for amputees by [G. Shi et al., IEEE Trans. Haptics, 2020, 13, 204-210]. The fingertip ellipsoid modulates the compression force and transmits it to the feedback actuator when the finger interacts with an object. In this paper, the haptic feedback system has been modelled using finite deformation theory. For the ellipsoid fingertip, the compression behaviour between two rigid, flat surfaces has been studied and can predict the force-indentation trend and deformed shape of the membrane with the contact area. For the feedback actuator, the model for the flat membrane is developed with elastic theory, in which the deformation resulting in contact area increase has been studied. The model has been validated with experimental results, which consists of the fingertip ellipsoid membrane being compressed by a rigid surface and the feedback actuator being pressurised. The results of force-indentation, pressure-indentation and the deformation of the membrane from ellipsoid modelling lay within the experimental data and fit the non-linear trend well. The results from modelling the feedback actuator have the same trend as the experimental data in the force-pressure relationship. The haptic feedback system is consistent as a functional tactile sensor after validation. We present the modelling and validation of the proposed model for the mechanical driven haptic feedback system.

2.
Sensors (Basel) ; 18(5)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29701704

RESUMO

This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.

3.
Surg Endosc ; 31(1): 264-273, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27338578

RESUMO

BACKGROUND: Sponsored by the European Commission, the FP7 STIFF-FLOP project aimed at developing a STIFFness controllable Flexible and Learn-able manipulator for surgical operations, in order to overcome the current limitations of rigid-link robotic technology. Herein, we describe the first cadaveric series of total mesorectal excision (TME) using a soft and flexible robotic arm for optic vision in a cadaver model. METHODS: TME assisted by the STIFF-FLOP robotic optics was successfully performed in two embalmed male human cadavers. The soft and flexible optic prototype consisted of two modules, each measuring 60 mm in length and 14.3 mm in maximum outer diameter. The robot was attached to a rigid shaft connected to an anthropomorphic manipulator robot arm with six degrees of freedom. The controller device was equipped with two joysticks. The cadavers (BMI 25 and 28 kg/m2) were prepared according to the Thiel embalming method. The procedure was performed using three standard laparoscopic instruments for traction and dissection, with the aid of a 30° rigid optics in the rear for documentation. RESULTS: Following mobilization of the left colonic flexure and division of the inferior mesenteric vessels, TME was completed down to the pelvic floor. The STIFF-FLOP robotic optic arm seemed to acquire superior angles of vision of the surgical field in the pelvis, resulting in an intact mesorectum in both cases. Completion times of the procedures were 165 and 145 min, respectively. No intraoperative complications occurred. No technical failures were registered. CONCLUSIONS: The STIFF-FLOP soft and flexible robotic optic arm proved effective in assisting a laparoscopic TME in human cadavers, with a superior field of vision compared to the standard laparoscopic vision, especially low in the pelvis. The introduction of soft and flexible robotic devices may aid in overcoming the technical challenges of difficult laparoscopic procedures based on standard rigid instruments.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/métodos , Reto/cirurgia , Procedimentos Cirúrgicos Robóticos/instrumentação , Cadáver , Estudos de Viabilidade , Humanos , Laparoscopia , Masculino
4.
Sensors (Basel) ; 16(11)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27869689

RESUMO

This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor's main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human-robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests.

5.
Front Robot AI ; 11: 1403733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899065

RESUMO

Soft robots exhibit complex nonlinear dynamics with large degrees of freedom, making their modelling and control challenging. Typically, reduced-order models in time or space are used in addressing these challenges, but the resulting simplification limits soft robot control accuracy and restricts their range of motion. In this work, we introduce an end-to-end learning-based approach for fully dynamic modelling of any general robotic system that does not rely on predefined structures, learning dynamic models of the robot directly in the visual space. The generated models possess identical dimensionality to the observation space, resulting in models whose complexity is determined by the sensory system without explicitly decomposing the problem. To validate the effectiveness of our proposed method, we apply it to a fully soft robotic manipulator, and we demonstrate its applicability in controller development through an open-loop optimization-based controller. We achieve a wide range of dynamic control tasks including shape control, trajectory tracking and obstacle avoidance using a model derived from just 90 min of real-world data. Our work thus far provides the most comprehensive strategy for controlling a general soft robotic system, without constraints on the shape, properties, or dimensionality of the system.

6.
IEEE Trans Biomed Eng ; PP2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042540

RESUMO

OBJECTIVE: Finger and fingertip loss is the most common form of upper-limb amputation. With a focus on amputations involving the loss of distal and/or partial middle finger segments, this paper outlines the design and development of a novel soft body-powered hydraulically-driven actuation system for a prosthetic finger, while offering an in-depth examination of its subsystems. METHOD: The proposed device utilises a soft wearable hydraulic mechanism to transfer pressure from the proximal interphalangeal (PIP) joint of the human finger to the distal interphalangeal (DIP) joint of the prosthetic finger, enabling movement of the soft prosthetic DIP joint. The design parameters of the soft actuator, such as its configuration, constituent material, and volume were analysed through experiments with able-bodied participants. Each participant tried 42 different actuators while flexing their index finger, repeating the task four times, yielding 168 trials per participant. The human and prosthetic finger flexion angles and resultant pressures were measured using an Aurora electromagnetic sensor and a fluid pressure transducer. All data was segmented and analysed. RESULT: Soft actuator designs were selected through statistical analysis of the material (Agilus 30 and Dragon Skin 30), configuration (chambers located underside or around the PIP joint), and volume. CONCLUSION: The study demonstrated that the selected soft wearable hydraulic mechanism transferred generated pressure from the participant's PIP joint effectively, enabling movement of the prosthetic digit. SIGNIFICANCE: Our research contributes to current developments in versatile body-powered prosthetic devices, laying the foundations for broad applications in affordable healthcare devices.

7.
IEEE Trans Haptics ; PP2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662564

RESUMO

Fully autonomous vehicles, capable of completing entire end-to-end journeys without the interference of a human driver, will be one of the biggest transforming technologies of the next decades. As the journey towards fully autonomous vehicles progresses, there will be an increase in the number of highly automated vehicles on the roads, requiring the human driver to take back control in situations, which cannot be handled by the vehicle autonomously. These human-robot take-over requests can lead to safety risks, in particular in scenarios when the driver fails to understand the take-over request and, hence, lacks situational awareness. This paper presents the acceptance and usability assessment of a haptic feedback driver seat capable of informing the driver of a take-over request through static mechano-tactile haptic feedback. The seat is equipped with an embedded array of soft pneumatic actuators, that have been fully modelled and characterised. The evaluation process of the haptic feedback seat engaged 21 participants who experienced both auditory and haptic feedback from the seat in a number of simulation experiments within a driving simulator. The vehicular technology was assessed through well-established methods to understand the acceptance (usefulness and satisfaction) and usability of the haptic feedback driver seat.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38082621

RESUMO

Providing imaging during interventional treatments of cardiovascular diseases is challenging. Magnetic Resonance Imaging (MRI) has gained popularity as it is radiation-free and returns high resolution of soft tissue. However, the clinician has limited access to the patient, e.g., to their femoral artery, within the MRI scanner to accurately guide and manipulate an MR-compatible catheter. At the same time, communication will need to be maintained with a clinician, located in a separate control room, to provide the most appropriate image to the screen inside the MRI room. Hence, there is scope to explore the feasibility of how autonomous catheterization robots could support the steering of catheters along trajectories inside complex vessel anatomies.In this paper, we present a Learning from Demonstration based Gaussian Mixture Model for a robot trajectory optimisation during pulmonary artery catheterization. The optimisation algorithm is integrated into a 2 Degree-of-Freedom MR-compatible interventional robot allowing for continuous and simultaneous translation and rotation. Our methodology achieves autonomous navigation of the catheter tip from the inferior vena cava, through the right atrium and the right ventricle into the pulmonary artery where an interventions is performed. Our results show that our MR-compatible robot can follow an advancement trajectory generated by our Learning from Demonstration algorithm. Looking at the overall duration of the intervention, it can be concluded that procedures performed by the robot (teleoperated or autonomously) required significantly less time compared to manual hand-held procedures.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Robótica/métodos , Cateterismo de Swan-Ganz , Catéteres , Cateterismo
9.
IEEE Trans Biomed Eng ; 70(12): 3469-3479, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37363848

RESUMO

OBJECTIVE: Aortic stenos (AS) is a heart valve disease that commonly affects the elderly. Transcatheter aortic valve implantation is a minimally invasive treatment that allows to replace the function of the diseased native valve with a prosthetic device, relying on catheters for device implantation. According to the current clinical guidelines, the choice of the implanted device is based on preoperative sizing determined by image-based technology. However, this assessment faces inherent limitations that can lead to sub-optimal sizing of the prosthesis; in turn, this can cause major post-operative complications like aortic regurgitation or cardiac electrical signal disruption. METHOD: By utilizing balloon pressure and volume data, this article proposes an intra-operative method for determining the dimension of the aortic annulus which takes into account its compliance and geometric irregularity. The intra-balloon pressure-volume curves were obtained using an Automated Balloon Inflation Device operating a commercially available valvuloplasty balloon catheter. A sizing algorithm to estimate the dimensions of the annulus was integrated via a validated analytical model and a numerical model for balloon free-inflation. Tests were performed on circular and elliptical idealised aortic phantoms. RESULTS: Experimental results confirm that the pressure-volume data processed with the sizing algorithm can be used to determine the circular annular diameter for all tissue rigidities. CONCLUSION: The measurement of stiffer elliptical annulus phantoms shows good accuracy and high repeatability. SIGNIFICANCE: This work represents substantial progress toward improving the selection of TAVI devices by using balloon catheters to improve the sizing of compliant aortic annuli with complex geometry.


Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Idoso , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Desenho de Prótese , Catéteres , Implante de Prótese de Valva Cardíaca/métodos , Resultado do Tratamento
10.
Artigo em Inglês | MEDLINE | ID: mdl-38083787

RESUMO

Computational models for radio frequency catheter ablation (RFCA) of cardiac arrhythmia have been developed and tested in conditions where a single ablation site is considered. However, in reality arrhythmic events are generated at multiple sites which are ablated during treatment. Under such conditions, heat accumulation from several ablations is expected and models should take this effect into account. Moreover, such models are solved using the Finite Element Method which requires a good quality mesh to ensure numerical accuracy. Therefore, clinical application is limited since heat accumulation effects are neglected and numerical accuracy depends on mesh quality. In this work, we propose a novel meshless computational model where tissue heat accumulation from previously ablated sites is taken into account. In this way, we aim to overcome the mesh quality restriction of the Finite Element Method and enable realistic multi-site ablation simulation. We consider a two ablation sites protocol where tissue temperature at the end of the first ablation is used as initial condition for the second ablation. The effect of the time interval between the ablation of the two sites is evaluated. The proposed method demonstrates that previous models that do not account for heat accumulation between ablations may underestimate the tissue heat distribution.Clinical relevance- The proposed computational model may be used to build and update a heat map for ablation guidance taking into account the contribution from previously ablated sites. Being a meshless model, it does not require significant input from the user during preprocessing. Therefore, it is suitable for application in a clinical setting.


Assuntos
Arritmias Cardíacas , Ablação por Cateter , Humanos , Simulação por Computador , Temperatura , Temperatura Alta , Ablação por Cateter/métodos
11.
Front Bioeng Biotechnol ; 11: 985901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901838

RESUMO

This paper proposes novel compliant mechanisms for constructing hand prostheses based on soft robotics. Two models of prosthetic hands are developed in this work. Three mechanical evaluations are performed to determine the suitability of the two designs for carrying out activities of daily living (ADLs). The first test measures the grip force that the prosthesis can generate on objects. The second determines the energy required and dissipated from the prosthesis to operate. The third test identifies the maximum traction force that the prosthesis can support. The tests showed that the PrHand1 prosthesis has a maximum grip force of 23.38 ± 1.5 N, the required energy is 0.76 ± 0.13 J, and the dissipated energy is 0.21 ± 0.17 J. It supports a traction force of 173.31 ± 5.7 N. The PrHand2 prosthesis has a maximum grip force of 36.13 ± 2.3 N, the required energy is 1.28 ± 0.13 J, the dissipated energy is 0.96 ± 0.12 J, and it supports a traction force of 78.48 ± 0 N. In conclusion, the PrHand1 prosthesis has a better performance in terms of energy and tensile force supported. The difference between the energy and traction force results is related to two design features of the PrHand2: fully silicone-coated fingers and a unifying mechanism that requires more force on the tendons to close the prosthesis. The grip force of the PrHand2 prosthesis was more robust than the PrHand1 due to its silicone coating, which allowed for an improved grip.

12.
Front Neurorobot ; 17: 1091827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396029

RESUMO

Introduction: The rise of soft robotics has driven the development of devices for assistance in activities of daily living (ADL). Likewise, different types of actuation have been developed for safer human interaction. Recently, textile-based pneumatic actuation has been introduced in hand exoskeletons for features such as biocompatibility, flexibility, and durability. These devices have demonstrated their potential use in assisting ADLs, such as the degrees of freedom assisted, the force exerted, or the inclusion of sensors. However, performing ADLs requires the use of different objects, so exoskeletons must provide the ability to grasp and maintain stable contact with a variety of objects to lead to the successful development of ADLs. Although textile-based exoskeletons have demonstrated significant advancements, the ability of these devices to maintain stable contact with a variety of objects commonly used in ADLs has yet to be fully evaluated. Materials and methods: This paper presents the development and experimental validation in healthy users of a fabric-based soft hand exoskeleton through a grasping performance test using The Anthropomorphic Hand Assessment Protocol (AHAP), which assesses eight types of grasping with 24 objects of different shapes, sizes, textures, weights, and rigidities, and two standardized tests used in the rehabilitation processes of post- stroke patients. Results and discussion: A total of 10 healthy users (45.50 ± 14.93 years old) participated in this study. The results indicate that the device can assist in developing ADLs by evaluating the eight types of grasps of the AHAP. A score of 95.76 ± 2.90% out of 100% was obtained for the Maintaining Score, indicating that the ExHand Exoskeleton can maintain stable contact with various daily living objects. In addition, the results of the user satisfaction questionnaire indicated a positive mean score of 4.27 ± 0.34 on a Likert scale ranging from 1 to 5.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3015-3019, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36083934

RESUMO

Aortic valvuloplasty is a minimally invasive procedure for the dilatation of stenotic aortic valves. Rapid ventricular pacing is an established technique for balloon stabilization during this procedure. However, low cardiac output due to the pacing is one of the inherent risks, which is also associated with several potential complications. This paper proposes a numerical modelling approach to understand the effect of different inflation levels of a valvuloplasty balloon catheter on the positional instability caused by a pulsating blood flow. An unstretched balloon catheter model was crimped into a tri-folded configuration and inflated to several levels. Ten different inflation levels were then tested, and a Fluid-Structure Interaction model was built to solve interactions between the balloon and the blood flow modelled in an idealised aortic arch. Our computational results show that the maximum displacement of the balloon catheter increases with the inflation level, with a small step at around 50% inflation and a sharp increase after reaching 85% inflation. This work represents a substantial progress towards the use of simulations to solve the interactions between a balloon catheter and pulsating blood flow.


Assuntos
Estenose da Valva Aórtica , Procedimentos Cirúrgicos Cardíacos , Estenose da Valva Aórtica/cirurgia , Ventrículos do Coração , Hemodinâmica , Humanos , Cateteres Urinários
14.
Front Bioeng Biotechnol ; 10: 924888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903795

RESUMO

Soft robotic approaches have been trialed for rehabilitation or assistive hand exoskeletons using silicone or textile actuators because they have more tolerance for alignment with biological joints than rigid exoskeletons. Textile actuators have not been previously evaluated, and this study compares the mechanical properties of textile and silicone actuators used in hand exoskeletons. The physical dimensions, the air pressure required to achieve a full bending motion, and the forces generated at the tip of the actuator were measured and compared. The results showed that the construction method of the silicone actuators is slower than the textile actuators, but it generates better dimensional accuracy. However, the air pressure required for the actuators to generate a full bending motion is significantly lower for textile actuators, and the blocking force generated at that pressure is 35% higher in the textile actuators. There are significant differences across all variables compared, indicating that actuators constructed using pleated textile techniques have greater potential for the construction of an exoskeleton for hand rehabilitation or assistance.

15.
Front Robot AI ; 8: 602091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095238

RESUMO

Active enrollment in rehabilitation training yields better treatment outcomes. This paper introduces an exoskeleton-assisted hand rehabilitation system. It is the first attempt to combine fingertip cutaneous haptic stimulation with exoskeleton-assisted hand rehabilitation for training participation enhancement. For the first time, soft material 3D printing techniques are adopted to make soft pneumatic fingertip haptic feedback actuators to achieve cheaper and faster iterations of prototype designs with consistent quality. The fingertip haptic stimulation is synchronized with the motion of our hand exoskeleton. The contact force of the fingertips resulted from a virtual interaction with a glass of water was based on data collected from normal hand motions to grasp a glass of water. System characterization experiments were conducted and exoskeleton-assisted hand motion with and without the fingertip cutaneous haptic stimulation were compared in an experiment involving healthy human subjects. Users' attention levels were monitored in the motion control process using a Brainlink EEG-recording device and software. The results of characterization experiments show that our created haptic actuators are lightweight (6.8 ± 0.23 g each with a PLA fixture and Velcro) and their performance is consistent and stable with small hysteresis. The user study experimental results show that participants had significantly higher attention levels with additional haptic stimulations compared to when only the exoskeleton was deployed; heavier stimulated grasping weight (a 300 g glass) was associated with significantly higher attention levels of the participants compared to when lighter stimulated grasping weight (a 150 g glass) was applied. We conclude that haptic stimulations increase the involvement level of human subjects during exoskeleton-assisted hand exercises. Potentially, the proposed exoskeleton-assisted hand rehabilitation with fingertip stimulation may better attract user's attention during treatment.

16.
Prosthet Orthot Int ; 44(2): 92-98, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100630

RESUMO

BACKGROUND AND AIM: Partial hand amputations are common in developing countries and have a negative impact on patients and their families' quality of life. The uniqueness of each partial hand amputation, coupled with the relatively high costs of prostheses, makes it challenging to provide suitable prosthetic solutions in developing countries. Current solutions often have long lead times and require a high level of expertise to produce. The aim of this study was to design and develop an affordable patient-specific partial hand prosthesis for developing countries. TECHNIQUE: The prosthesis was designed for a patient with transmetacarpal amputation (i.e. three amputated fingers and partial palm). The final design was passive, controlled by the contralateral hand, and utilized the advanced flexibility properties of thermoplastic polyurethane in a glove-like design that costs approximately 20 USD to fabricate. Quantitative and qualitative tests were conducted to assess performance of the device after the patient used the final design. A qualitative assessment was performed to gather the patient's feedback following a series of tests of grasp taxonomy. A quantitative assessment was performed through a grasp and lift test to measure the prosthesis' maximum load capacity. DISCUSSION: This study showed that the prosthesis enhanced the patient's manual handling capabilities, mainly in the form of grasp stability. The prosthesis was light weight and could be donned and doffed by the patient independently. Limitations include the need to use the contralateral hand to achieve grasping and low grasp strength. CLINICAL RELEVANCE: Persons with partial hand amputation in developing countries lack access to affordable functional prostheses, hindering their ability to participate in the community. 3D-printed prostheses can provide a low-cost solution that is adaptable to different amputation configurations.


Assuntos
Amputação Traumática/reabilitação , Membros Artificiais/economia , Traumatismos da Mão/reabilitação , Impressão Tridimensional/economia , Desenho de Prótese/economia , Humanos , Masculino
17.
IEEE Trans Haptics ; 13(1): 204-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012023

RESUMO

Notable advancements have been achieved in providing amputees with sensation through invasive and non-invasive haptic feedback systems such as mechano-, vibro-, electro-tactile and hybrid systems. Purely mechanical-driven feedback approaches, however, have been little explored. In this paper, we now created a haptic feedback system that does not require any external power source (such as batteries) or other electronic components (see Fig. 1 ). The system is low-cost, lightweight, adaptable and robust against external impact (such as water). Hence, it will be sustainable in many aspects. We have made use of latest multi-material 3D printing technology (Stratasys Objet500 Connex3) being able to fabricate a soft sensor and a mechano-tactile feedback actuator made of a rubber (TangoBlack Plus) and plastic (VeroClear) material. When forces are applied to the fingertip sensor, fluidic pressure inside the system acts on the membrane of the feedback actuator resulting in mechano-tactile sensation. Our [Formula: see text] feedback actuator is able to transmit a force range between 0.2 N (the median touch threshold) and 2.1 N (the maximum force transmitted by the feedback actuator at a 3 mm indentation) corresponding to force range exerted to the fingertip sensor of 1.2-18.49 N.


Assuntos
Retroalimentação Sensorial , Desenho de Prótese/instrumentação , Desenho de Prótese/métodos , Percepção do Tato , Tato , Adulto , Feminino , Dedos/fisiologia , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Masculino , Limiar Sensorial , Adulto Jovem
18.
Soft Robot ; 6(2): 228-249, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702390

RESUMO

Various methods based on hyperelastic assumptions have been developed to address the mathematical complexities of modeling motion and deformation of continuum manipulators. In this study, we propose a quasistatic approach for 3D modeling and real-time simulation of a pneumatically actuated soft continuum robotic appendage to estimate the contact force and overall pose. Our model can incorporate external load at any arbitrary point on the body and deliver positional and force propagation information along the entire backbone. In line with the proposed model, the effectiveness of elasticity versus hyperelasticity assumptions (neo-Hookean and Gent) is investigated and compared. Experiments are carried out with and without external load, and simulations are validated across a range of Young's moduli. Results show best conformity with Hooke's model for limited strains with about 6% average normalized error of position; and a mean absolute error of less than 0.08 N for force applied at the tip and on the body, demonstrating high accuracy in estimating the position and the contact force.


Assuntos
Elasticidade/fisiologia , Dedos/fisiologia , Robótica/instrumentação , Simulação por Computador , Humanos , Modelos Biológicos , Movimento (Física) , Fenômenos Físicos , Procedimentos Cirúrgicos Robóticos/instrumentação , Estresse Mecânico
20.
Int J Med Robot ; 14(1)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29205769

RESUMO

BACKGROUND: For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). METHODS: A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. RESULTS: Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. CONCLUSION: Simulations and experiments show the efficacy of the proposed soft robot.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/instrumentação , Laparoscópios , Laparoscopia/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Robóticos/instrumentação , Fenômenos Biomecânicos , Cadáver , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Desenho de Equipamento , Humanos , Laparoscopia/métodos , Modelos Estatísticos , Movimento (Física) , Procedimentos Cirúrgicos Robóticos/métodos , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA