Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Europace ; 24(3): 497-510, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661651

RESUMO

AIMS: Gain-of-function mutations in RYR2, encoding the cardiac ryanodine receptor channel (RyR2), cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Whereas, genotype-phenotype correlations of loss-of-function mutations remains unknown, due to a small number of analysed mutations. In this study, we aimed to investigate their genotype-phenotype correlations in patients with loss-of-function RYR2 mutations. METHODS AND RESULTS: We performed targeted gene sequencing for 710 probands younger than 16-year-old with inherited primary arrhythmia syndromes (IPAS). RYR2 mutations were identified in 63 probands, and 3 probands displayed clinical features different from CPVT. A proband with p.E4146D developed ventricular fibrillation (VF) and QT prolongation whereas that with p.S4168P showed QT prolongation and bradycardia. Another proband with p.S4938F showed short-coupled variant of torsade de pointes (scTdP). To evaluate the functional alterations in these three mutant RyR2s and p.K4594Q previously reported in a long QT syndrome (LQTS), we measured Ca2+ signals in HEK293 cells and HL-1 cardiomyocytes as well as Ca2+-dependent [3H]ryanodine binding. All mutant RyR2s demonstrated a reduced Ca2+ release, an increased endoplasmic reticulum Ca2+, and a reduced [3H]ryanodine binding, indicating loss-of-functions. In HL-1 cells, the exogenous expression of S4168P and K4594Q reduced amplitude of Ca2+ transients without inducing Ca2+ waves, whereas that of E4146D and S4938F evoked frequent localized Ca2+ waves. CONCLUSION: Loss-of-function RYR2 mutations may be implicated in various types of arrhythmias including LQTS, VF, and scTdP, depending on alteration of the channel activity. Search of RYR2 mutations in IPAS patients clinically different from CPVT will be a useful strategy to effectively discover loss-of-function RYR2 mutations.


Assuntos
Síndrome do QT Longo , Taquicardia Ventricular , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Cálcio/metabolismo , Células HEK293 , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
2.
Hum Mol Genet ; 26(9): 1670-1677, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335032

RESUMO

Calmodulin is a ubiquitous Ca2+ sensor molecule encoded by three distinct calmodulin genes, CALM1-3. Recently, mutations in CALM1-3 have been reported to be associated with severe early-onset long-QT syndrome (LQTS). However, the underlying mechanism through which heterozygous calmodulin mutations lead to severe LQTS remains unknown, particularly in human cardiomyocytes. We aimed to establish an LQTS disease model associated with a CALM2 mutation (LQT15) using human induced pluripotent stem cells (hiPSCs) and to assess mutant allele-specific ablation by genome editing for the treatment of LQT15. We generated LQT15-hiPSCs from a 12-year-old boy with LQTS carrying a CALM2-N98S mutation and differentiated these hiPSCs into cardiomyocytes (LQT15-hiPSC-CMs). Action potentials (APs) and L-type Ca2+ channel (LTCC) currents in hiPSC-CMs were analyzed by the patch-clamp technique and compared with those of healthy controls. Furthermore, we performed mutant allele-specific knockout using a CRISPR-Cas9 system and analyzed electrophysiological properties. Electrophysiological analyses revealed that LQT15-hiPSC-CMs exhibited significantly lower beating rates, prolonged AP durations, and impaired inactivation of LTCC currents compared with control cells, consistent with clinical phenotypes. Notably, ablation of the mutant allele rescued the electrophysiological abnormalities of LQT15-hiPSC-CMs, indicating that the mutant allele caused dominant-negative suppression of LTCC inactivation, resulting in prolonged AP duration. We successfully recapitulated the disease phenotypes of LQT15 and revealed that inactivation of LTCC currents was impaired in CALM2-N98S hiPSC model. Additionally, allele-specific ablation using the latest genome-editing technology provided important insights into a promising therapeutic approach for inherited cardiac diseases.


Assuntos
Calmodulina/genética , Calmodulina/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Potenciais de Ação , Alelos , Arritmias Cardíacas/genética , Diferenciação Celular/genética , Linhagem Celular , Fenômenos Eletrofisiológicos , Sistema de Condução Cardíaco , Humanos , Síndrome do QT Longo/metabolismo , Masculino , Mutação de Sentido Incorreto , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp
3.
Circ J ; 81(12): 1783-1791, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28637969

RESUMO

BACKGROUND: TheSCN5Agene encodes the α subunit of the cardiac voltage-gated sodium channel, NaV1.5. The missense mutation, D1275N, has been associated with a range of unusual phenotypes associated with reduced NaV1.5 function, including cardiac conduction disease and dilated cardiomyopathy. Curiously, the reported biophysical properties ofSCN5A-D1275N channels vary with experimental system.Methods and Results:First, using a human embryonic kidney (HEK) 293 cell-based heterologous expression system, theSCN5A-D1275N channels showed similar maximum sodium conductance but a significantly depolarizing shift of activation gate (+10 mV) compared to wild type. Second, we generated human-induced pluripotent stem cells (hiPSCs) from a 24-year-old female who carried heterozygousSCN5A-D1275N and analyzed the differentiated cardiomyocytes (CMs). AlthoughSCN5Atranscript levels were equivalent between D1275N and control hiPSC-CMs, both the total amount of NaV1.5 and the membrane fractions were reduced approximately half in the D1275N cells, which were rescued by the proteasome inhibitor MG132 treatment. Electrophysiological assays revealed that maximum sodium conductance was reduced to approximately half of that in control hiPSC-CMs in the D1275N cells, and maximum upstroke velocity of action potential was lower in D1275N, which was consistent with the reduced protein level of NaV1.5. CONCLUSIONS: This study successfully demonstrated diminished sodium currents resulting from lower NaV1.5 protein levels, which is dependent on proteasomal degradation, using a hiPSC-based model forSCN5A-D1275N-related sodium channelopathy.


Assuntos
Canalopatias/genética , Células-Tronco Pluripotentes Induzidas/citologia , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Eletrofisiologia Cardíaca , Células HEK293 , Humanos , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/análise , Complexo de Endopeptidases do Proteassoma/metabolismo , Sódio/metabolismo
4.
Circ J ; 77(5): 1307-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23400258

RESUMO

BACKGROUND: In the short- to mid-term, cardiomyocytes generated from human-induced pluripotent stem cells (hiPSC-CMs) have been reported to be less mature than those of adult hearts. However, the maturation process in a long-term culture remains unknown. METHODS AND RESULTS: A hiPSC clone generated from a healthy control was differentiated into CMs through embryoid body (EB) formation. The ultrastructural characteristics and gene expressions of spontaneously contracting EBs were analyzed through 1-year of culture after cardiac differentiation was initiated. The 14-day-old EBs contained a low number of myofibrils, which lacked alignment, and immature high-density Z-bands lacking A-, H-, I-, and M-bands. Through the long-term culture up to 180 days, the myofibrils became more tightly packed and formed parallel arrays accompanied by the appearance of mature Z-, A-, H-, and I-bands, but not M-bands. Notably, M-bands were finally detected in 360-day-old EBs. The expression levels of the M-band-specific genes in hiPSC-CMs remained lower in comparison with those in the adult heart. Immunocytochemistry indicated increasing number of MLC2v-positive/MLC2a-negative cells with decreasing number of MLC2v/MLC2a double-positive cells, indicating maturing of ventricular-type CMs. CONCLUSIONS: The structural maturation process of hiPSC-CMs through 1-year of culture revealed ultrastructural sarcomeric changes accompanied by delayed formation of M-bands. Our study provides new insight into the maturation process of hiPSC-CMs.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Sarcômeros/diagnóstico por imagem , Biomarcadores/metabolismo , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Fatores de Tempo , Ultrassonografia
5.
Heart Rhythm ; 20(1): 89-99, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007726

RESUMO

BACKGROUND: A missense mutation in the α1c subunit of voltage-gated L-type Ca2+ channel-coding CACNA1C-E1115K, located in the Ca2+ selectivity site, causes a variety of arrhythmogenic phenotypes. OBJECTIVE: We aimed to investigate the electrophysiological features and pathophysiological mechanisms of CACNA1C-E1115K in patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). METHODS: We generated iPSCs from a patient carrying heterozygous CACNA1C-E1115K with overlapping phenotypes of long QT syndrome, Brugada syndrome, and mild cardiac dysfunction. Electrophysiological properties were investigated using iPSC-CMs. We used iPSCs from a healthy individual and an isogenic iPSC line corrected using CRISPR-Cas9-mediated gene editing as controls. A mathematical E1115K-CM model was developed using a human ventricular cell model. RESULTS: Patch-clamp analysis revealed that E1115K-iPSC-CMs exhibited reduced peak Ca2+ current density and impaired Ca2+ selectivity with an increased permeability to monovalent cations. Consequently, E1115K-iPSC-CMs showed decreased action potential plateau amplitude, longer action potential duration (APD), and a higher frequency of early afterdepolarization compared with controls. In optical recordings examining the antiarrhythmic drug effect, late Na+ channel current (INaL) inhibitors (mexiletine and GS-458967) shortened APDs specifically in E1115K-iPSC-CMs. The AP-clamp using a voltage command obtained from E1115K-iPSC-CMs with lower action potential plateau amplitude and longer APD confirmed the upregulation of INaL. An in silico study recapitulated the in vitro electrophysiological properties. CONCLUSION: Our iPSC-based analysis in CACNA1C-E1115K with disrupted CaV1.2 selectivity demonstrated that the aberrant currents through the mutant channels carried by monovalent cations resulted in specific action potential changes, which increased endogenous INaL, thereby synergistically contributing to the arrhythmogenic phenotype.


Assuntos
Síndrome de Brugada , Canais de Cálcio Tipo L , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Potenciais de Ação , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Fenótipo
6.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866681

RESUMO

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Taquicardia Ventricular , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Arritmias Cardíacas , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Cálcio/metabolismo , Mutação
7.
Sci Rep ; 12(1): 19110, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351955

RESUMO

Premature cardiac myocytes derived from human induced pluripotent stem cells (hiPSC-CMs) show heterogeneous action potentials (APs), probably due to different expression patterns of membrane ionic currents. We developed a method for determining expression patterns of functional channels in terms of whole-cell ionic conductance (Gx) using individual spontaneous AP configurations. It has been suggested that apparently identical AP configurations can be obtained using different sets of ionic currents in mathematical models of cardiac membrane excitation. If so, the inverse problem of Gx estimation might not be solved. We computationally tested the feasibility of the gradient-based optimization method. For a realistic examination, conventional 'cell-specific models' were prepared by superimposing the model output of AP on each experimental AP recorded by conventional manual adjustment of Gxs of the baseline model. Gxs of 4-6 major ionic currents of the 'cell-specific models' were randomized within a range of ± 5-15% and used as an initial parameter set for the gradient-based automatic Gxs recovery by decreasing the mean square error (MSE) between the target and model output. Plotting all data points of the MSE-Gx relationship during optimization revealed progressive convergence of the randomized population of Gxs to the original value of the cell-specific model with decreasing MSE. The absence of any other local minimum in the global search space was confirmed by mapping the MSE by randomizing Gxs over a range of 0.1-10 times the control. No additional local minimum MSE was obvious in the whole parameter space, in addition to the global minimum of MSE at the default model parameter.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Potenciais de Ação/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transporte de Íons , Miócitos Cardíacos/metabolismo
8.
Methods Mol Biol ; 2320: 111-119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302653

RESUMO

Induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) have been shown to have great potential to play a key role in investigating cardiac diseases in vitro. Multielectrode array (MEA) system is sometimes preferable to patch-clamp in electrophysiological experiments in terms of several advantages. Here we show our protocol of electrophysiological examinations using MEA.


Assuntos
Bioensaio/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Análise Serial de Tecidos/métodos , Células Cultivadas , Fenômenos Eletrofisiológicos/fisiologia , Humanos , Técnicas de Patch-Clamp/métodos
9.
Methods Mol Biol ; 2320: 121-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302654

RESUMO

Electrophysiological analysis of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using a patch-clamp technique enables the most precise evaluation of electrophysiological properties in single cells. Compared to multielectrode array (MEA) and membrane voltage imaging, patch-clamp recordings offer quantitative measurements of action potentials, and the relevant ionic currents which are essential for the research of disease modeling of inherited arrhythmias, safety pharmacology, and drug discovery using hiPSC-CMs. In this chapter, we describe the detail flow of patch-clamp recordings in hiPSC-CMs.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp/métodos , Análise Serial de Tecidos/métodos , Potenciais de Ação/fisiologia , Arritmias Cardíacas/terapia , Células Cultivadas , Humanos
10.
Front Cell Dev Biol ; 8: 761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903469

RESUMO

BACKGROUND: Long QT syndrome type 3 (LQT3) is caused by gain-of-function mutations in the SCN5A gene, which encodes the α subunit of the cardiac voltage-gated sodium channel. LQT3 patients present bradycardia and lethal arrhythmias during rest or sleep. Further, the efficacy of ß-blockers, the drug used for their treatment, is uncertain. Recently, a large multicenter LQT3 cohort study demonstrated that ß-blocker therapy reduced the risk of life-threatening cardiac events in female patients; however, the detailed mechanism of action remains unclear. OBJECTIVES: This study aimed to establish LQT3-human induced pluripotent stem cells (hiPSCs) and to investigate the effect of propranolol in this model. METHOD: An hiPSCs cell line was established from peripheral blood mononuclear cells of a boy with LQT3 carrying the SCN5A-N1774D mutation. He had suffered from repetitive torsades de pointes (TdPs) with QT prolongation since birth (QTc 680 ms), which were effectively treated with propranolol, as it suppressed lethal arrhythmias. Furthermore, hiPSCs were differentiated into cardiomyocytes (CMs), on which electrophysiological functional assays were performed using the patch-clamp method. RESULTS: N1774D-hiPSC-CMs exhibited significantly prolonged action potential durations (APDs) in comparison to those of the control cells (N1774D: 440 ± 37 ms vs. control: 272 ± 22 ms; at 1 Hz pacing; p < 0.01). Furthermore, N1774D-hiPSC-CMs presented gain-of-function features: a hyperpolarized shift of steady-state activation and increased late sodium current compared to those of the control cells. 5 µM propranolol shortened APDs and inhibited late sodium current in N1774D-hiPSC-CMs, but did not significantly affect in the control cells. In addition, even in the presence of intrapipette guanosine diphosphate ßs (GDPßs), an inhibitor of G proteins, propranolol reduced late sodium current in N1774D cells. Therefore, these results suggested a unique inhibitory effect of propranolol on late sodium current unrelated to ß-adrenergic receptor block in N1774D-hiPSC-CMs. CONCLUSION: We successfully recapitulated the clinical phenotype of LQT3 using patient-derived hiPSC-CMs and determined that the mechanism, by which propranolol inhibited the late sodium current, was independent of ß-adrenergic receptor signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA