Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 186(1): 25-36, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389403

RESUMO

PURPOSE: Treatment of breast cancer (BC) by standard methods is effective in the early stage, but ineffective in the advanced stage of disease. To develop an adoptive T cell therapy for advanced and severe BC, we generated fourth-generation chimeric antigen receptor (CAR) T cells targeting folate receptor alpha antigen (FRα) expressed on BC cells, and preclinically evaluated their anti-BC activities. METHODS: The fourth-generation FRα-CAR T cells containing extracellular FRα-specific single-chain variable fragment (scFv) and three intracellular costimulatory domains (CD28, 4-1BB, and CD27) linked to CD3ζ were generated using a lentiviral system, and then were evaluated for their anti-BC activities in two-dimensional and three-dimensional (spheroid) cultures. RESULTS: When our fourth-generation FRα-CAR T cells were cocultured with FRα-expressing MDA-MB-231 BC cell line at an effector to target ratio of 20:1, these CAR T cells specifically lysed 88.7 ± 10.6% of the target cells. Interestingly, the cytotoxic lysis of FRα-CAR T cells was more pronounced in target cells with higher surface FRα expression. This specific cytotoxicity of the CAR T cells was not observed when cocultured with FRα-negative MCF10A normal breast-like cell line at the same ratio (34.3 ± 4.7%). When they were cocultured with MDA-MD-231 spheroid, the FRα-CAR T cells exhibited antitumor activity marked with spheroid size reduction and breakage. CONCLUSION: This proof-of-concept study thus shows the feasibility of using these fourth-generation FRα-CAR T cells for adoptive T cell therapy in BC.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Receptor 1 de Folato/genética , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 19(10): e0312414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39446747

RESUMO

Cyanobacteria and algae serving as promising food supplements have recently garnered attention for their emerging potential in anti-cancer activity. Cholangiocarcinoma (CCA) or bile duct cancer is one of the top-leading cancers affecting people, particularly in Asian continent. With patients exhibiting no or minimal symptoms in the early stages, advanced CCA is often diagnosed, and primary treatments such as surgery may not be suitable. Discovery of natural bioactive compounds for cancer treatments have, thus, attracted attention as one of the effective means to combat CCA or to supplement primary treatments. In this work, ethanolic and polysaccharide extracts of cyanobacteria and algae were tested for their cytotoxicity against 2 CCA cell lines (KKU055 and KKU213A). The ethanolic extracts from Leptolyngbya sp. and Chlorella sp. demonstrated growth inhibition of both CCA cell lines, with IC50 values of 0.658 mg/mL and 0.687 mg/mL for KKU055, and 0.656 mg/mL and 0.450 mg/mL for KKU213A. In contrast, only the polysaccharide extracts from Sargassum spp. exhibited a remarkable cytotoxic effect, while the polysaccharide extract from Spirulina sp. showed slight effect only at a higher concentration (2 mg/mL). All tested extracts were further investigated for improving immune cell killing ability and showed that Spirulina sp. polysaccharide extract was able to improve the immune cell killing ability. This extract was then investigated for its effects on the immune cell population, which demonstrated to have positive impact on NK cell population. To further explore the potential use, synergistic effect of Spirulina sp. polysaccharide extract with an already-in-use chemotherapeutic drug, gemcitabine, on immune cell cytotoxicity was investigated. The results showed that the immune cell cytotoxicity was enhanced in the co-treatment compared to the use of each treatment separately. The most apparent difference was observed in KKU055 cells where % living cells were reduced from 78.96% (immune cell alone) to 20.93% when the combined gemcitabine and Spirulina sp. extracts were used.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Spirulina , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/imunologia , Spirulina/química , Humanos , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/imunologia , Polissacarídeos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Chlorella/química , Gencitabina , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Polissacarídeos Bacterianos/farmacologia , Antineoplásicos/farmacologia , Sargassum/química
3.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683232

RESUMO

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Linfócitos T , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Animais
4.
Int Immunopharmacol ; 113(Pt B): 109442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435066

RESUMO

Adoptive T cell therapy using second-generation anti-CD19 chimeric antigen receptor T cells (anti-CD19-CAR2-T) induced complete remission in many heavily pretreated patients with B cell acute lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma (DLBCL). However, poor clinical efficacy was observed in treating aggressive B cell lymphomas (BCL). The limited T cell function was reported by programmed cell death protein 1 ligand (PD-L1) expressed on BCL cells bound to the PD-1 receptor on T cells. To overcome this problem, we generated anti-CD19-CAR4-T cells secreting anti-PD-L1 single-chain variable fragment (scFv), namely anti-CD19-CAR5-T cells, and evaluated their functions in vitro. Both anti-CD19-CAR-T cells contain an anti-CD19 scFv derived from a monoclonal antibody, FMC63, linked to CD28/4-1BB/CD27/CD3ζ. The secreting anti-PD-L1 scFv is derived from atezolizumab. Our results showed that secreted anti-PD-L1 scFv could bind to PD-L1 and block the binding of anti-PD-L1 monoclonal antibodies on PD-L1high tumor cells. Anti-CD19-CAR4-T and anti-CD19-CAR5-T cells efficiently killed CD19+ target tumor cells in two-dimensional (2D) and three-dimensional (3D) co-culture systems. However, anti-CD19-CAR5-T cells demonstrated superior proliferative ability. Interestingly, at a low effector (E) to target (T) ratio of 0.5:1, anti-CD19-CAR5-T cells showed higher cytotoxicity against CD19+/PD-L1high cells compared to that of anti-CD19-CAR4-T cells. The cytotoxicity of anti-CD19-CAR4-T cells against CD19+/PD-L1high could be restored by adding anti-PD-L1 scFv. Our findings demonstrate the combination antitumor efficiency of anti-CD19-CAR4-T cells and anti-PD-L1 scFv against CD19+/PD-L1high tumors. As such, anti-CD19-CAR5-T cells should be further investigated in vivo antitumor efficiency and clinical trials as a treatment for aggressive B cell lymphoma.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/uso terapêutico , Ligantes , Linfócitos T , Antígenos CD19 , Proteínas Adaptadoras de Transdução de Sinal
5.
Sci Rep ; 12(1): 6154, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418130

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer with rapid progression and poor survival. Novel and more effective therapies than those currently available are, therefore, urgently needed. Our research group previously reported the combination of gemcitabine and cytotoxic T lymphocytes to be more effective than single-agent treatment for the elimination of CCA cells. However, gemcitabine treatment of CCA cells upregulates the expression of an immune checkpoint protein (programmed death-ligand 1 [PD-L1]) that consequently inhibits the cytotoxicity of T lymphocytes. To overcome this challenge and take advantage of PD-L1 upregulation upon gemcitabine treatment, we generated recombinant PD-L1xCD3 bispecific T cell engagers (BiTEs) to simultaneously block PD-1/PD-L1 signaling and recruit T lymphocytes to eliminate CCA cells. Two recombinant PD-L1xCD3 BiTEs (mBiTE and sBiTE contain anti-PD-L1 scFv region from atezolizumab and from a published sequence, respectively) were able to specifically bind to both CD3 on T lymphocytes, and to PD-L1 overexpressed after gemcitabine treatment on CCA (KKU213A, KKU055, and KKU100) cells. mBiTE and sBiTE significantly enhanced T lymphocyte cytotoxicity against CCA cells, especially after gemcitabine treatment, and their magnitudes of cytotoxicity were positively associated with the levels of PD-L1 expression. Our findings suggest combination gemcitabine and PD-L1xCD3 BiTE as a potential alternative therapy for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Linfócitos T Citotóxicos , Antígeno B7-H1/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Complexo CD3 , Colangiocarcinoma/patologia , Desoxicitidina/análogos & derivados , Humanos , Gencitabina
6.
Front Oncol ; 11: 802876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35117999

RESUMO

Second-generation anti-CD19-chimeric antigen receptor T cells (anti-CD19-CAR2 T cells) are effective for treating B-cell malignancies; however, anti-CD19-CAR2 T cells can induce human anti-mouse immune responses because anti-CD19 single-chain variable fragment (scFv) in the CAR molecules is derived from a murine FMC63 (mFMC63) monoclonal antibody. Consequently, the persistence of mFMC63-CAR2 T cells and their therapeutic efficiency in patients are decreased, which results in tumor relapse. In an attempt to remedy this shortcoming, we generated a new anti-CD19-CAR T cells containing fully human anti-CD19 scFv (Hu1E7-CAR4 T cells) to pre-clinically evaluate and compare with mFMC63-CAR4 T cells. The human anti-CD19 scFv (Hu1E7) was isolated from a human scFv phage display library and fused to the hinge region of CD8α, the transmembrane domain of CD28, three intracellular costimulatory domains (CD28, 4-1BB, and CD27), and a CD3ζ signaling domain (28BB27ζ). Compared to mFMC63-CAR2 T cells (BBζ) and mFMC63-CAR3 (BB27ζ), the mFMC63-CAR4 T cells (28BB27ζ) exerted superior anti-tumor activity against Raji (CD19+) target cell. The Hu1E7-CAR4 and mFMC63-CAR4 T cells demonstrated comparable cytotoxicity and proliferation. Interestingly, compared to mFMC63-CAR4 T cells, the Hu1E7-CAR4 T cells secreted lower levels of cytokines (IFN-γ and TNF-α), which may be due to the lower binding affinity of Hu1E7-CAR4 T cells. These findings demonstrated the successfulness in creation of a new CAR T cells containing a novel fully human-derived scFv specific to CD19+ cancer cells. In vivo studies are needed to further compare the anti-tumor efficacy and safety of Hu1E7-CAR4 T cells and mFMC63-CAR4 T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA