RESUMO
Superoxide (O2(-): IUPAC name dioxide (â¢1-)) is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2(-) throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied six stations, two on the West African continental shelf and four open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that, in the surface ocean impacted by Saharan aerosols and coastal sediment resuspension, the main decay pathways for superoxide are via reactions with Mn(II) and organic matter.
Assuntos
Manganês/química , Água do Mar/química , Superóxidos/química , Oceano Atlântico , Cobre/análise , Cobre/química , Ferro/análise , Ferro/química , Manganês/análise , Água do Mar/análise , Superóxidos/análiseRESUMO
Manganese (Mn) is a required element for oceanic phytoplankton as it plays a critical role in photosynthesis, through its unique redox chemistry, as the active site in photosystem II, and in enzymes that act as defenses against reactive oxygen species (ROS), most notably for protection against superoxide (O2(-)), through the action of superoxide dismutase (SOD), and against hydrogen peroxide (H2O2) via peroxidases and catalases. The distribution and redox speciation of Mn in the ocean is also apparently controlled by reactions with ROS. Here we examine the connections between ROS and dissolved Mn species in the upper ocean using field and laboratory experimental data. Our results suggest it is unlikely that significant concentrations of Mn(III) are produced in the euphotic zone, as in the absence of evidence for the existence of strong Mn(III) ligands, Mn(II) reacts with O2(-) to form the short-lived transient manganous superoxide, MnO2(+), which may react rapidly with other redox species in a manner similar to O2(-). Experiments with the strong Mn(III) chelator, desferrioxamine B (DFB), in seawater indicated that the Mn(III) species are unlikely to form, as formation of the precursor Mn(II) complex is hindered due to the stability of the Ca complex with DFB.
Assuntos
Desferroxamina/análogos & derivados , Peróxido de Hidrogênio/química , Manganês/química , Oxigênio/química , Superóxidos/química , Catalase/química , Desferroxamina/química , Compostos Organometálicos/química , Água do Mar/químicaRESUMO
A seawater preconcentration system (seaFAST) with offline sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) detection was critically evaluated for ultra-low trace elemental analysis of Southern Ocean samples over a four-year period (2015-2018). The commercially available system employs two Nobias PA1 resin columns for buffer cleaning and sample preconcentration, allowing salt matrix removal with simultaneous extraction of a range of trace elements. With a primary focus on method simplicity and practicality, a range of experimental parameters relevant to oceanographic analysis were considered, including reduction of blank levels (over weeks and years), instrument conditioning, extraction efficiencies over different pH ranges (5.8-6.4), and preconcentration factors (~10-70 times). Conditions were optimised for the analysis of ten important trace elements (Cd, Co, Cu, Fe, Ga, Mn, Ni, Pb, Ti and Zn) in open ocean seawater samples, and included initial pre-cleaning and conditioning of the seaFAST unit for one week before each separate analytical sequence; a controlled narrow buffer pH of 6.20⯱â¯0.02 used for extraction; and a sample preconcentration factor of 10 for (relatively) concentrated rainwater or sea ice, 40 for typical seawater samples, and up to 67 times for seawater samples collected in the remote open ocean such as the Southern Ocean. Method accuracy (both short - days to weeks - and long term - months to years) were evaluated through extensive analysis of a range of oceanographic standard reference samples including SAFe D1 (nâ¯=â¯20), D2 (nâ¯=â¯3), S (nâ¯=â¯15), GEOTRACES GD (nâ¯=â¯6), GSC (nâ¯=â¯42) and GSP (nâ¯=â¯42), as well as NASS-6 (nâ¯=â¯6). Measured values for oceanographic samples were found to agree with consensus values to within ±â¯6% for Cd, Cu, Fe, Ni, Pb and Zn. Offsets were noted for Co (labile fraction only; no UV oxidation), Mn (difference also noted in other recent studies) and Ti (limited reference values). No consensus values currently exist for Ga. Iron and Mn in Southern Ocean samples were also independently verified via flow injection analysis methods (R2 = 0.95, nâ¯=â¯244 (Fe) and 0.92, nâ¯=â¯85 (Mn), paired t-test, pâ¯âª0.05). Precisions over four years were evaluated through analysis of community seawater samples as well as a range of bulk in-house seawaters (3 sources, each n~100) and acid blanks (nâ¯=â¯250), and were typically found to be within 5-8%, depending on analyte and concentration. Values presented here represent one of the largest independent data sets for these reference samples, as well as the most documented comprehensive suite of GSP and GSC values currently available (consensus values have not yet been released). Samples covering a range of salinities (0-60) were investigated to demonstrate method versatility, with excellent recoveries noted using the seaFAST Nobias PA1 column (>98% for most elements, with 70-80% for Ga and Ti). By way of example, data is presented showing the application of the method to samples collected on the Kerguelen plateau in the Indian sector of the Southern Ocean (HEOBI voyage, January-February 2016) and in land-fast ice and brine collected near Davis station, Antarctica, in austral summer 2015 (with a salinity range from 0 to 73â¯gâ¯kg-1). Finally, a range of recommendations for successful implementation of a seaFAST system are provided, along with considerations for future investigation.
RESUMO
The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface (<20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.