Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Am Chem Soc ; 146(5): 3023-3030, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261007

RESUMO

The switching of the protonation sites in hydrated nicotine, probed by experimental infrared (IR) spectroscopy and theoretical ab initio calculations, is facilitated via a Grotthuss instead of a bimolecular proton transfer (vehicle) mechanism at the experimental temperature (T = 130 K) as unambiguously confirmed by experiments with deuterated water. In contrast, the bimolecular vehicle mechanism is preferred at higher temperatures (T = 300 K) as determined by theory. The Grotthuss mechanism for the concerted proton transfer results in the production of nicotine's bioactive and addictive pyrrolidine-protonated (Pyrro-H+) protomer with just 5 water molecules. Theoretical analysis suggests that the concerted proton transfer occurs via hydrogen-bonded bridges consisting of a 3 water molecule "core" that connects the pyridine protonated (Pyri-H+) with the pyrrolidine-protonated (Pyrro-H+) protomers. Additional water molecules attached as acceptors to the hydrogen-bonded "core" bridge result in lowering the reaction barrier of the concerted proton transfer down to less than 6 kcal/mol, which is consistent with the experimental observations.

2.
Annu Rev Phys Chem ; 74: 337-360, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093659

RESUMO

Interaction analysis techniques, including the many-body expansion (MBE), symmetry-adapted perturbation theory, and energy decomposition analysis, allow for an intuitive understanding of complex molecular interactions. We review these methods by first providing a historical context for the study of many-body interactions and discussing how nonadditivities emerge from Hamiltonians containing strictly pairwise-additive interactions. We then elaborate on the synergy between these interaction analysis techniques and the development of advanced force fields aimed at accurately reproducing the Born-Oppenheimer potential energy surface. In particular, we focus on ab initio-based force fields that aim to explicitly reproduce many-body terms and are fitted to high-level electronic structure results. These force fields generally incorporate many-body effects through (a) parameterization of distributed multipoles, (b) explicit fitting of the MBE, (c) inclusion of many-atom features in a neural network, and (d) coarse-graining of many-body terms into an effective two-body term. We also discuss the emerging use of the MBE to improve the accuracy and speed of ab initio molecular dynamics.

3.
J Chem Inf Model ; 64(5): 1568-1580, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38382011

RESUMO

Atomic structure prediction and associated property calculations are the bedrock of chemical physics. Since high-fidelity ab initio modeling techniques for computing the structure and properties can be prohibitively expensive, this motivates the development of machine-learning (ML) models that make these predictions more efficiently. Training graph neural networks over large atomistic databases introduces unique computational challenges, such as the need to process millions of small graphs with variable size and support communication patterns that are distinct from learning over large graphs, such as social networks. We demonstrate a novel hardware-software codesign approach to scale up the training of atomistic graph neural networks (GNN) for structure and property prediction. First, to eliminate redundant computation and memory associated with alternative padding techniques and to improve throughput via minimizing communication, we formulate the effective coalescing of the batches of variable-size atomistic graphs as the bin packing problem and introduce a hardware-agnostic algorithm to pack these batches. In addition, we propose hardware-specific optimizations, including a planner and vectorization for the gather-scatter operations targeted for Graphcore's Intelligence Processing Unit (IPU), as well as model-specific optimizations such as merged communication collectives and optimized softplus. Putting these all together, we demonstrate the effectiveness of the proposed codesign approach by providing an implementation of a well-established atomistic GNN on the Graphcore IPUs. We evaluate the training performance on multiple atomistic graph databases with varying degrees of graph counts, sizes, and sparsity. We demonstrate that such a codesign approach can reduce the training time of atomistic GNNs and can improve their performance by up to 1.5× compared to the baseline implementation of the model on the IPUs. Additionally, we compare our IPU implementation with a Nvidia GPU-based implementation and show that our atomistic GNN implementation on the IPUs can run 1.8× faster on average compared to the execution time on the GPUs.


Assuntos
Aceleração , Redes Neurais de Computação , Algoritmos , Comunicação , Inteligência
4.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341703

RESUMO

We rely on a total of 23 (cluster size, 8 structural, and 14 connectivity) descriptors to investigate structural patterns and connectivity motifs associated with water cluster aggregation. In addition to the cluster size n (number of molecules), the 8 structural descriptors can be further categorized into (i) one-body (intramolecular): covalent OH bond length (rOH) and HOH bond angle (θHOH), (ii) two-body: OO distance (rOO), OHO angle (θOHO), and HOOX dihedral angle (ϕHOOX), where X lies on the bisector of the HOH angle, (iii) three-body: OOO angle (θOOO), and (iv) many-body: modified tetrahedral order parameter (q) to account for two-, three-, four-, five-coordinated molecules (qm, m = 2, 3, 4, 5) and radius of gyration (Rg). The 14 connectivity descriptors are all many-body in nature and consist of the AD, AAD, ADD, AADD, AAAD, AAADD adjacencies [number of hydrogen bonds accepted (A) and donated (D) by each water molecule], Wiener index, Average Shortest Path Length, hydrogen bond saturation (% HB), and number of non-short-circuited three-membered cycles, four-membered cycles, five-membered cycles, six-membered cycles, and seven-membered cycles. We mined a previously reported database of 4 948 959 water cluster minima for (H2O)n, n = 3-25 to analyze the evolution and correlation of these descriptors for the clusters within 5 kcal/mol of the putative minima. It was found that rOH and % HB correlated strongly with cluster size n, which was identified as the strongest predictor of energetic stability. Marked changes in the adjacencies and cycle count were observed, lending insight into changes in the hydrogen bond network upon aggregation. A Principal Component Analysis (PCA) was employed to identify descriptor dependencies and group clusters into specific structural patterns across different cluster sizes. The results of this study inform our understanding of how water clusters evolve in size and what appropriate descriptors of their structural and connectivity patterns are with respect to system size, stability, and similarity. The approach described in this study is general and can be easily extended to other hydrogen-bonded systems.

5.
Phys Chem Chem Phys ; 25(10): 7120-7143, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36853239

RESUMO

We assess the performance of 7 pairwise additive (TIP3P, TIP4P, TIP4P-ice, TIP5P, OPC, SPC, SPC/E) and 8 families of many-body potentials (q-AQUA, HIPPO, AMOEBA, EFP, TTM, WHBB, MB-pol, MB-UCB) in reproducing high-level ab initio benchmark values, CCSD(T) or MP2 at the complete basis set (CBS) limit for the binding energy and the many-body expansion (MBE) of water clusters n = 2-11, 16-17, 20, 25. By including a large range of cluster sizes having dissimilar hydrogen bonding networks, we obtain an understanding of how these potentials perform for different hydrogen bonding arrangements that are mostly outside of their parameterization range. While it is appropriate to compare the results of ab initio based many-body potentials directly to the electronic binding energies (De's), the pairwise additive ones are compared to the enthalpies at T = 298 K, ΔH(298 K), as the latter class of force fields are parametrized to reproduce enthalpies (implicitly accounting for zero-point energy corrections) rather than binding energies. We find that all pairwise additive potentials considered overestimate the reference ΔH values for the n = 2-25 clusters by >13%. For the water dimer (n = 2) in particular, the errors are in the range 83-119% for the pairwise additive potentials studied since these are based on an effective rather than the true 2-body interaction specifically designed as a means of partially accounting for the missing many-body terms. This stronger 2-body interaction is achieved by an enhanced monomer dipole moment that mimics its increase from the gas phase monomer to the condensed phase value. Indeed, for cluster sizes n ≥ 4 the percent deviations become slightly smaller (albeit all exceeding 13%). In contrast, we find that the many-body potentials perform more accurately in reproducing the electronic binding energies (De's) throughout the entire cluster range (n = 2-25), all reproducing the ab initio benchmark binding energies within ±7% of the respective CBS values. We further assess the ability of a subset of the many-body potentials (MB-UCB, q-AQUA, MB-pol, and TTM2.1-F) to also reproduce the magnitude of the ab initio many-body energy terms for water cluster sizes n = 7, 10, 16 and 17. The potentials show an overall good agreement with the available benchmark values. However, we identify characteristic differences upon comparing the many-body terms at both the ab initio-optimized geometries and the respective potential-optimized geometries to the reference ab initio values. Additionally, by applying this analysis to a wide range of cluster sizes, trends in the MBE of the potentials with increasing cluster size can be identified. Finally, in an attempt to draw a parallel between the pairwise additive and many-body potentials, we report the analysis of the individual molecular dipole moments for water clusters with 1 to ∼4 solvation shells with the TTM2.1-F potential. We find that the internally solvated water molecules have in general a larger molecular dipole moment ranging from 2.6-3.0 D. This justifies the use of an enhanced, with respect to the gas-phase value, molecular dipole moment for the pairwise additive potentials, which is intended to fold in the many body terms into an effective (enhanced) pairwise interaction through the choice of the charges. These results have important implications for the development of future generations of efficient, transferable, and highly accurate classical interaction potentials in both the pairwise additive and many-body categories.

6.
Phys Chem Chem Phys ; 25(6): 4824-4838, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36692338

RESUMO

We have established CCSD(T)/CBS (Complete Basis Set) limits for 3 stationary points on the benzene dimer potential energy surface, corresponding to the π⋯π (parallel displaced or PD(C2h), minimum) and CH⋯π (T-shaped or T(C2v), transition state) and tilted T-shaped (or TT(Cs), minimum) bonding scenarios considering both the structure and binding energy. The CCSD(T)/CBS binding energies are -2.65 ± 0.02 (PD), -2.74 ± 0.03 (T), and -2.83 ± 0.01 kcal mol-1 (TT). To this end, the CH⋯π is ∼0.2 kcal mol-1 stronger than the π⋯π interaction, whereas the tilting of the CH donating benzene molecule with respect to the other benzene is worth 0.1 kcal mol-1. As previously discussed in the literature, the MP2 level of theory does not provide a close match for either the energy or structure, yet the SCS-MP2 yields structures in excellent agreement with respect to the CCSD(T) result. It is found that the SCS-MI-MP2 also gives optimized structures very close to SCS-MP2 (within ∼0.01 Å of the benchmark). Despite the closer match in structure, the spin-biased MP2 methods (SCS-, SCS-MI-, and SOS-MP2) incorrectly predict the relative stabilities of the isomers. That said, none of the spin biased MP2 methods offers a good compromise between energy and structure for the systems examined. Finally, the CCSD(T)/CBS benchmarks were used to assess the performance of 13 DFT functionals selected from different rungs of Jacob's ladder. Several functionals such as TPSS-D3, B3LYP-D3, B97-D, B97-D3, and B2PLYP-D3 provided a good description of the binding energies for both CH⋯π and π⋯π interactions, yielding values within 6% of the CCSD(T)/CBS benchmark values. Unlike the MP2 methods, these functionals correctly predict the relative stability of the PD(C2h) and T(C2v) dimers. Further, we find that there is no systematic improvement as Jacob's ladder is ascended (increased complexity of functional). The best functionals that result in a good compromise between structure and energy accuracy are B97-D3 and B2PLYP-D3 for both the CH⋯π and π⋯π interaction. Despite the impressive performance of these functionals, a challenge that remains is ensuring the transferability of these density functionals in accurately describing the interaction between dimers of larger aromatic molecules, the latter requiring high-level benchmarks for these systems.

7.
Proc Natl Acad Sci U S A ; 117(42): 26047-26052, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33024015

RESUMO

We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled ion trap. The measurements are carried out by applying two-color, infrared-infrared photodissociation mass spectrometry to the D3O+·(HDO)(D2O)19 isotopologue of the "magic number" protonated water cluster, H+·(H2O)21 The OH group can occupy any one of the five spectroscopically distinct sites in the distorted pentagonal dodecahedron cage structure. The OH frequency is observed to evolve over tens of milliseconds in the temperature range (90 to 120 K). Starting at 100 K, large "jumps" are observed between two OH frequencies separated by ∼300 cm-1, indicating migration of the OH group from the bound OH site at 3,350 cm-1 to the free position at 3,686 cm-1 Increasing the temperature to 110 K leads to partial interconversion among many sites. All sites are observed to interconvert at 120 K such that the distribution of the unique OH group among them adopts the form one would expect for a canonical ensemble. The spectral dynamics displayed by the clusters thus offer an unprecedented view into the molecular-level processes that drive spectral diffusion in an extended network of water molecules.

8.
J Am Chem Soc ; 144(37): 16698-16702, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36043852

RESUMO

We report a joint experimental-theoretical study of the never reported before structure and infrared spectra of gas phase monohydrated nicotine (NIC) and nornicotine (NOR) and use them to assign their protonation sites. NIC's biological activity is strongly affected by its protonation site, namely, the pyrrolidine (Pyrro-NICH+, anticipated active form) and pyridine (Pyri-NICH+) forms; however, these have yet to be directly experimentally determined in either the nicotinic acetylcholine receptor (nAChR, no water present) or the acetylcholine-binding protein (AChBP, a single water molecule is present) but can only be inferred to be Pyrro-NICH+ from the intermolecular distance to the neighboring residues (i.e., tryptophan). Our temperature-controlled double ion trap infrared spectroscopic experiments assisted by the collisional stripping method and high-level theoretical calculations yield the protonation ratio of Pyri:Pyrro = 8:2 at 240 K for the gas phase NICH+···(H2O) complex, which resembles the molecular cluster present in the AChBP. Therefore, a single water molecule in the gas phase enhances this ratio in NICH+ relative to the 3:2 for the nonhydrated gas phase NICH+ in a trend that contrasts with the almost exclusive presence of Pyrro-NICH+ in aqueous solution. In contrast, the Pyri-NORH+ protomer is exclusively observed, a fact that may correlate with its weaker biological activity.


Assuntos
Nicotina , Receptores Nicotínicos , Acetilcolina , Sítios de Ligação , Proteínas de Transporte/química , Modelos Moleculares , Subunidades Proteicas/metabolismo , Piridinas , Pirrolidinas , Receptores Nicotínicos/química , Triptofano
9.
Phys Chem Chem Phys ; 24(10): 5786-5793, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-34939632

RESUMO

The infrared (IR) spectra of gas phase protonated nicotine has been measured in the never-before probed N-H "fingerprint region" (3200-3500 cm-1). The protonated molecules generated by an electrospray source are thermalized in the first ion trap with water vapor and He gas at a pre-determined temperature prior to being probed by IR spectroscopy in the second ion trap at 4 K. The IR spectra exhibit two N-H stretching bands which are assigned to the pyridine and pyrrolidine protomers with the aid of high-level electronic structure calculations. This finding is in sharp contrast to previous spectroscopic studies that suggested a single population of the pyridine protomer. The relative populations of the two protomers vary by changing the temperature of the thermalizing trap from 180-300 K. The relative conformer populations at 240 K and 300 K are well reproduced by the theoretical calculations, unequivocally determining that gas phase nicotine is a 3 : 2 mixture of both pyridine and pyrrolidine protomers at room temperature. The thermalizing anhydrous vapor does not result in any population change. It rather demonstrates the catalytic role of water in achieving equilibrium between the two protomers. The combination of IR spectroscopy and electronic structure calculations establish the small energy difference between the pyridine and pyrrolidine protomers in nicotine. One of the gas phase nicotine pyrrolidine protomers has the closest conformational resemblance among all low-lying energy isomers with the X-ray structure of nicotine in the nicotinic acetylcholine receptor (nAChR).


Assuntos
Nicotina , Receptores Nicotínicos , Nicotina/química , Prótons , Piridinas , Pirrolidinas
10.
J Chem Phys ; 156(24): 244303, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778077

RESUMO

We present a new, novel implementation of the Many-Body Expansion (MBE) to account for the breaking of covalent bonds, thus extending the range of applications from its previous popular usage in the breaking of hydrogen bonds in clusters to molecules. A central concept of the new implementation is the in situ atomic electronic state of an atom in a molecule that casts the one-body term as the energy required to promote it to that state from its ground state. The rest of the terms correspond to the individual diatomic, triatomic, etc., fragments. Its application to the atomization energies of the XHn series, X = C, Si, Ge, Sn and n = 1-4, suggests that the (negative, stabilizing) 2-B is by far the largest term in the MBE with the higher order terms oscillating between positive and negative values and decreasing dramatically in size with increasing rank of the expansion. The analysis offers an alternative explanation for the purported "first row anomaly" in the incremental Hn-1X-H bond energies seen when these energies are evaluated with respect to the lowest energy among the states of the XHn molecules. Due to the "flipping" of the ground/first excited state between CH2 (3B1 ground state, 1A1 first excited state) and XH2, X = Si, Ge, Sn (1A1 ground state, 3B1 first excited state), the overall picture does not exhibit a "first row anomaly" when the incremental bond energies are evaluated with respect to the molecular states having the same in situ atomic states.

11.
J Chem Phys ; 157(8): 084313, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36049988

RESUMO

We examine the many-body expansion (MBE) for alkaline earth metal clusters, Ben, Mgn, Can (n = 4, 5, 6), at the Møller-Plesset second order perturbation theory, coupled-cluster singles and doubles with perturbative triples, multi-reference perturbation theory, and multi-reference configuration interaction levels of theory. The magnitude of each term in the MBE is evaluated for several geometrical configurations. We find that the behavior of the MBE for these clusters depends strongly on the geometrical arrangement and, to a lesser extent, on the level of theory used. Another factor that affects the MBE is the in situ (ground or excited) electronic state of the individual atoms in the cluster. For most geometries, the three-body term is the largest, followed by a steady decrease in absolute energy for subsequent terms. Though these systems exhibit non-negligible multi-reference effects, there was little qualitative difference in the MBE when employing single vs multi-reference methods. Useful insights into the connectivity and stability of these clusters have been drawn from the respective potential energy surfaces and quasi-atomic orbitals for the various dimers, trimers, and tetramers. Through these analyses, we investigate the similarities and differences in the binding energies of different-sized clusters for these metals.

12.
J Chem Phys ; 157(9): 094301, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075713

RESUMO

We provide a detailed study of hydrogen bonding arrangements, relative stability, residual entropy, and an analysis of the many-body effects in the (H2O)20 (D-cage), (H2O)24 (T-cage), and (H2O)28 (H-cage) hollow cages making up structures I (sI) and II (sII) of clathrate hydrate lattices. Based on the enumeration of the possible hydrogen bonding networks for a fixed oxygen atom scaffold, the residual entropy (S0) of these three gas phase cages was estimated at 0.754 82, 0.754 44, and 0.754 17 · Nkb, where N is the number of molecules and kb is Boltzmann's constant. A previously identified descriptor of enhanced stability based on the relative arrangement and connectivity of nearest-neighbor fragments on the polyhedral water cluster [strong-weak-effective-bond model] also applies to the larger hollow cages. The three cages contain a maximum of 7, 9, and 11 such preferable arrangements of trans nearest dimer pairs with one "free" OH bond on the donor molecule (t1d dimers). The Many-Body Expansion (MBE) up to the 4-body suggests that the many-body terms vary nearly linearly with the cluster binding energy. Using a hierarchical approach of screening the relative stability of networks starting from optimizations with the TIP4P, TTM2.1-F, and MB-pol classical potentials, subsequently refining at more accurate levels of electronic structure theory (DFT and MP2), and finally correcting for zero-point energy, we were able to identify a group of four low-lying isomers of the (H2O)24 T-cage, two of which are antisymmetric and the other two form a pair of antipode configurations.

13.
J Chem Phys ; 157(2): 024101, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35840377

RESUMO

We present a classical induction model to evaluate the three-body ion-water-water (I-W-W) and water-water-water (W-W-W) interactions in aqueous ionic systems. The classical description of the induction energy is based on electrostatic distributed multipoles up to hexadecapole and distributed polarizabilities up to quadrupole-quadrupole on the O and H atoms of water. The monatomic ions were described by a point charge and a dipole-dipole polarizability, while for the polyatomic ions, distributed multipoles up to hexadecapole and distributed polarizabilities up to quadrupole-quadrupole were used. The accuracy of the classical model is benchmarked against an accurate dataset of 936 (I-W-W) and 2184 (W-W-W) three-body terms for 13 different monatomic and polyatomic cation and anion systems. The classical model shows excellent agreement with the reference second order Moller-Plesset and coupled-cluster single double and perturbative triple [CCSD(T)] three-body energies. The Root-Mean-Square-Errors (RMSEs) for monatomic cations, monatomic anions, and polyatomic ions were 0.29, 0.25, and 0.12 kcal/mol, respectively. The corresponding RMSE for 1744 CCSD(T)/aVTZ three-body (W-W-W) energies, used to train MB-pol, was 0.12 kcal/mol. The accuracy of the proposed classical model demonstrates that the three-body term for aqueous ionic systems can be accurately modeled classically. This approach provides a fast, efficient, and as-accurate path toward modeling the three-body term in aqueous ionic systems that is fully transferable across systems with different ions without the need to fit to tens of thousands of ab initio calculations for each ion to extend existing many-body force fields to interactions between water and ions.

14.
J Chem Phys ; 157(14): 144104, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36243526

RESUMO

A Generalized Morse Potential (GMP) is an extension of the Morse Potential (MP) with an additional exponential term and an additional parameter that compensate for MP's erroneous behavior in the long range part of the interaction potential. Because of the additional term and parameter, the vibrational levels of the GMP cannot be solved analytically, unlike the case for the MP. We present several numerical approaches for solving the vibrational problem of the GMP based on Galerkin methods, namely, the Laguerre Polynomial Method (LPM), the Symmetrized LPM, and the Polynomial Expansion Method (PEM), and apply them to the vibrational levels of the homonuclear diatomic molecules B2, O2, and F2, for which high level theoretical near full configuration interaction (CI) electronic ground state potential energy surfaces and experimentally measured vibrational levels have been reported. Overall, the LPM produces vibrational states for the GMP that are converged to within spectroscopic accuracy of 0.01 cm-1 in between 1 and 2 orders of magnitude faster and with much fewer basis functions/grid points than the Colbert-Miller Discrete Variable Representation (CN-DVR) method for the three homonuclear diatomic molecules examined in this study. A Python library that fits and solves the GMP and similar potentials can be downloaded from https://gitlab.com/gds001uw/generalized-morse-solver.


Assuntos
Algoritmos , Vibração , Análise Espectral
15.
Proc Natl Acad Sci U S A ; 116(17): 8167-8172, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952786

RESUMO

Chemically binding to argon (Ar) at room temperature has remained the privilege of the most reactive electrophiles, all of which are cationic (or even dicationic) in nature. Herein, we report a concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability. To validate our concept, we synthesized the percyano-dodecoborate [B12(CN)12]2-, the electronically most stable dianion ever investigated experimentally. It serves as a precursor for the generation of the monoanion [B12(CN)11]-, which indeed spontaneously binds Ar at 298 K. Our mass spectrometric and spectroscopic studies are accompanied by high-level computational investigations including a bonding analysis of the exceptional B-Ar bond. The detection and characterization of this highly reactive, structurally stable anionic superelectrophile starts another chapter in the metal-free activation of particularly inert compounds and elements.

16.
Phys Chem Chem Phys ; 23(19): 11196-11210, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33899854

RESUMO

We report a Many Body Energy (MBE) analysis of aqueous ionic clusters containing anions and cations at the two opposite ends of the Hofmeister series, viz. the kosmotropes Ca2+ and SO42- and the chaotropes NH4+ and ClO4-, with 9 water molecules to quantify how these ions alter the interaction between the water molecules in their immediate surroundings. We specifically aim at quantifying how various ions (depending on their position in the Hofmeister series) affect the interaction between the surrounding water molecules and probe whether there is a qualitatively different behavior between kosmotropic vs. chaotropic ions. The current results when compared to the ones reported earlier for water clusters [J. P. Heindel and S. S. Xantheas, J. Chem. Theor. Comput., 2020, 16, 6843-6855] as well as for alkali metal and halide ion aqueous clusters of the same size [J. P. Heindel and S. S. Xantheas, J. Chem. Theor. Comput., 2021, 17, 2200-2216], which lie in the middle of the Hofmeister series, offer a complete account of the effect an ion across the Hofmeister series from "kosmotropes" to "chaotropes" has on the interaction between the neighboring water molecules. Through this analysis, noteworthy differences between the MBE of kosmotropes and chaotropes were identified. The MBE of kosmotropes is dominated by ion-water interactions that extend beyond the 4-body term, the rank at which the MBE of pure water converges. The percentage contribution of the 2-B term to the total cluster binding energy is noticeably larger. The disruption of the hydrogen bonded network due to the dominant ion-water interactions results in weak, unfavorable water-water interactions. The MBE for chaotropes, on the other hand, was found to converge more quickly as it more closely resembles that of pure water clusters. Chaotropes exhibit weaker overall binding energies and weaker ion-water interactions in favor of water-water interactions, somewhat recovering the pattern of the 2-4 body terms exemplified by pure water clusters. A remarkable anti-correlation between the 2-B ion-water (I-W) and water-water (W-W) interactions as well as between the 3-B (I-W-W) and (I-W) interactions was found for both kosmotropic and chaotropic ions. This anti-correlation is linear for both monatomic anions and monatomic cations, suggesting the existence of underlying physical mechanisms that were previously unexplored. The consideration of two different structural arrangements (ion inside and outside of a water cluster) suggests that fully solvated (ion inside) chaotropes disrupt the hydrogen bonding network in a similar manner to partially solvated (ion outside) kosmotropes and offers useful insights into the modeling requirements of bulk vs. interfacial ion solvation. It is noteworthy that the 2-B contribution to the total Basis Set Superposition Error (BSSE) correction for both kosmotropic and chaotropic ions follows the universal erf profile vs. intermolecular distance previously reported for pure water, halide ion-water and alkali metal ion-water clusters. When scaled for the corresponding dimer energies and distances, a single profile fits the current results together with all previously reported ones for pure water and halide water clusters. This finding lends further support to schemes for accurately estimating the 2-B BSSE correction in condensed environments.

17.
J Phys Chem A ; 125(10): 2154-2162, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33661632

RESUMO

We present a transition state spectroscopic study of the OH + H2O reaction using the experimental technique of cryogenic negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum at 193 nm exhibits multiple vibrational progressions that include excitations to the shared H atom antisymmetric stretching mode with an interval of 0.32 eV as well as other progressions, mainly involving the H bending and O···O symmetric stretching modes. The vertical detachment energy (VDE) was measured at 3.53 eV, whereas an upper limit for the adiabatic detachment energy (ADE) was estimated at 2.90 eV. These values are in excellent agreement with the theoretically computed values of 3.51 and 2.87 eV, respectively, obtained at the CCSD(T)/aug-cc-pV5Z level of theory. The recorded NIPE spectrum is in very good agreement when compared to the one recently reported from four-dimensional Franck-Condon simulations, in which a similar spectral profile was predicted. Besides observing the ground state, we identified a charge-transfer excited state in the form of [OH-(H2O)+] with a relative energy of 1.39 eV, well matching the previous prediction of 1.36 eV.

18.
Phys Chem Chem Phys ; 22(14): 7460-7473, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32219243

RESUMO

The reduction of carbon dioxide to oxalate has been studied by experimental Collisionally Induced Dissociation (CID) and vibrational characterization of the alkali metal oxalates, supplemented by theoretical electronic structure calculations. The critical step in the reductive process is the coordination of CO2 to an alkali metal anion, forming a metal carbonite MCO2- able to subsequently receive a second CO2 molecule. While the energetic demand for these reactions is generally low, we find that the degree of activation of CO2 in terms of charge transfer and transition state energies is the highest for lithium and systematically decreases down the group (M = Li-Cs). This is correlated to the strength of the binding interaction between the alkali metal and CO2, which can be related to the structure of the oxalate moiety within the product metal complexes evolving from a planar to a staggered conformer with increasing atomic number of the interacting metal. Similar structural changes are observed for crystalline alkali metal oxalates, although the C2O42- moiety is in general more planar in these, a fact that is attributed to the increased number of interacting alkali metal cations compared to the gas-phase ions.

19.
J Phys Chem A ; 124(50): 10393-10406, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33270448

RESUMO

Decoding the structural information contained in the interfacial vibrational spectrum of water requires understanding how the spectral signatures of individual water molecules respond to their local hydrogen bonding environments. In this study, we isolated the contributions for the five classes of sites that differ according to the number of donor (D) and acceptor (A) hydrogen bonds that characterize each site. These patterns were measured by exploiting the unique properties of the water cluster cage structures formed in the gas phase upon hydration of a series of cations M+·(H2O)n (M = Li, Na, Cs, NH4, CH3NH3, H3O, and n = 5, 20-22). This selection of ions was chosen to systematically express the A, AD, AAD, ADD, and AADD hydrogen bonding motifs. The spectral signatures of each site were measured using two-color, IR-IR isotopomer-selective photofragmentation vibrational spectroscopy of the cryogenically cooled, mass selected cluster ions in which a single intact H2O is introduced without isotopic scrambling, an important advantage afforded by the cluster regime. The resulting patterns provide an unprecedented picture of the intrinsic line shapes and spectral complexities associated with excitation of the individual OH groups, as well as the correlation between the frequencies of the two OH groups on the same water molecule, as a function of network site. The properties of the surrounding water network that govern this frequency map are evaluated by dissecting electronic structure calculations that explore how changes in the nearby network structures, both within and beyond the first hydration shell, affect the local frequency of an OH oscillator. The qualitative trends are recovered with a simple model that correlates the OH frequency with the network-modulated local electron density in the center of the OH bond.

20.
J Chem Phys ; 153(2): 024302, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668919

RESUMO

We describe a method for the post-hoc interpretation of a neural network (NN) trained on the global and local minima of neutral water clusters. We use the structures recently reported in a newly published database containing over 5 × 106 unique water cluster networks (H2O)N of size N = 3-30. The structural properties were first characterized using chemical descriptors derived from graph theory, identifying important trends in topology, connectivity, and polygon structure of the networks associated with the various minima. The code to generate the molecular graphs and compute the descriptors is available at https://github.com/exalearn/molecular-graph-descriptors, and the graphs are available alongside the original database at https://sites.uw.edu/wdbase/. A Continuous-Filter Convolutional Neural Network (CF-CNN) was trained on a subset of 500 000 networks to predict the potential energy, yielding a mean absolute error of 0.002 ± 0.002 kcal/mol per water molecule. Clusters of sizes not included in the training set exhibited errors of the same magnitude, indicating that the CF-CNN protocol accurately predicts energies of networks for both smaller and larger sizes than those used during training. The graph-theoretical descriptors were further employed to interpret the predictive power of the CF-CNN. Topological measures, such as the Wiener index, the average shortest path length, and the similarity index, suggested that all networks from the test set were within the range of values as the ones from the training set. The graph analysis suggests that larger errors appear when the mean degree and the number of polygons in the cluster lie further from the mean of the training set. This indicates that the structural space, and not just the chemical space, is an important factor to consider when designing training sets, as predictive errors can result when the structural composition is sufficiently different from the bulk of those in the training set. To this end, the developed descriptors are quite effective in explaining the results of the CF-CNN (a.k.a. the "black box") model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA