RESUMO
Olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important species of the Mediterranean region and one of the most ancient species domesticated. The availability of whole genome assemblies and annotations of olive tree cultivars and oleaster (O. europaea subsp. europaea var. sylvestris) has contributed to a better understanding of genetic and genomic differences between olive tree cultivars. However, compared to other plant species there is still a lack of genomic resources for olive tree populations that span the entire Mediterranean region. In the present study we developed the most complete genomic variation map and the most comprehensive catalog/resource of molecular variation to date for 89 olive tree genotypes originating from the entire Mediterranean basin, revealing the genetic diversity of this commercially significant crop tree and explaining the divergence/similarity among different variants. Additionally, the monumental ancient tree 'Throuba Naxos' was studied to characterize the potential origin or routes of olive tree domestication. Several candidate genes known to be associated with key agronomic traits, including olive oil quality and fruit yield, were uncovered by a selective sweep scan to be under selection pressure on all olive tree chromosomes. To further exploit the genomic and phenotypic resources obtained from the current work, genome-wide association analyses were performed for 23 morphological and two agronomic traits. Significant associations were detected for eight traits that provide valuable candidates for fruit tree breeding and for deeper understanding of olive tree biology.
Assuntos
Olea , Olea/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Mapeamento Cromossômico , GenômicaRESUMO
High-depth whole-genome resequencing of 53 diverse fig tree genotypes yielded a rich dataset of genetic variants. We successfully identified 5,501,460 single-nucleotide polymorphisms (SNPs) and 1,228,537 insertions and deletions (InDels), providing a high-density and excellent-quality genetic map of the fig tree. We also performed a detailed population structure analysis, dividing the 53 genotypes into three geographical groups and assessing their genetic diversity and divergence. Analysis of structural variants (SVs) and copy number variations (CNVs) revealed their potential functional impact, particularly in plant-pathogen interaction and secondary metabolism. Metabolomic fingerprinting of fig genotypes uncovered extensive variation in primary metabolites and polyphenolic compounds, highlighting the influence of genotype on fruit quality traits such as nutritional content and bioactive compound composition. The genome-wide association study (GWAS) identified critical SNPs associated with fruit quality and morphological features. The discovery of significant candidate genes, such as AGL62, GDSL, and COBRA-like protein 4 genes, offers promising targets for marker-assisted selection and genome editing approaches to improve fig fruit morphological and quality traits. This extensive genomic analysis of fig trees enhances our understanding of the genetic basis of important agronomic traits and provides a rich resource for future research in this economically and nutritionally significant fruit.
Assuntos
Ficus , Genoma de Planta , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Ficus/genética , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética , Frutas/genética , Genótipo , Variações do Número de Cópias de DNA/genética , Genômica/métodos , Variação GenéticaRESUMO
Genome-wide transcriptome analysis provides systems-level insights into plant biology. Due to the limited depth of quantitative proteomics our understanding of gene-protein-complex stoichiometry is largely unknown in plants. Recently, the complexity of the proteome and its cell-/tissue-specific distribution have boosted the research community to the integration of transcriptomics and proteomics landscapes in a proteogenomic approach. Herein, we generated a quantitative proteome and transcriptome abundance atlas of 15 major sweet cherry (Prunus avium L., cv 'Tragana Edessis') tissues represented by 29 247 genes and 7584 proteins. Additionally, 199 984 alternative splicing events, particularly exon skipping and alternative 3' splicing, were identified in 23 383 transcribed regions of the analyzed tissues. Common signatures as well as differences between mRNA and protein quantities, including genes encoding transcription factors and allergens, within and across the different tissues are reported. Using our integrated dataset, we identified key putative regulators of fruit development, notably genes involved in the biosynthesis of anthocyanins and flavonoids. We also provide proteogenomic-based evidence for the involvement of ethylene signaling and pectin degradation in cherry fruit ripening. Moreover, clusters of genes and proteins with similar and different expression and suppression trends across diverse tissues and developmental stages revealed a relatively low RNA abundance-to-protein correlation. The present proteogenomic analysis allows us to identify 17 novel sweet cherry proteins without prior protein-level annotation evidenced in the currently available databases. To facilitate use by the community, we also developed the Sweet Cherry Atlas Database (https://grcherrydb.com/) for viewing and data mining these resources. This work provides new insights into the proteogenomics workflow in plants and a rich knowledge resource for future investigation of gene and protein functions in Prunus species.
Assuntos
Ascomicetos , Proteogenômica , Prunus avium , Antocianinas/metabolismo , Ascomicetos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Prunus avium/genética , Transcriptoma/genética , Árvores/genéticaRESUMO
BACKGROUND: Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS: The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION: The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.
Assuntos
Prunus avium , Frutas/genética , Humanos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Prunus avium/metabolismo , PeleRESUMO
BACKGROUND: Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS: In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS: These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.
Assuntos
Cucurbita , Cucurbita/genética , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Polinização , RNA-SeqRESUMO
There is a persistent interest in innovative and multifunctional ingredients in biology research. With regards to this, natural sources have an important role due to their multiple benefits. Thus, this study aims to present the pleiotropic activity of Prunus avium L. extract on human primary fibroblasts for proving its efficacy in dermis-related processes. We focused on the safety and efficacy assessments based on cytotoxicity and gene expression analysis under oxidative stress. Specifically, Prunus avium L. extract was proved non-cytotoxic in human fibroblasts. The gene expression analysis unveiled that this extract has in vitro protective properties on human dermal fibroblasts under oxidative stress related to antioxidant activity, anti-inflammatory response, cell proliferation and cell- aging. Our study demonstrated for the very first time that the Prunus avium L. extract is a multifunctional ingredient as it mediates several human dermis-related in vitro processes highlighting its potential to be used as an active ingredient in skin care products.
Assuntos
Antioxidantes/efeitos adversos , Fibroblastos/metabolismo , Frutas/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/efeitos adversos , Prunus avium/química , Pele/citologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Fibroblastos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/genética , Higiene da Pele/métodosRESUMO
Beans are one of the most important staple crops in the world. Runner bean (Phaseolus coccineus L.) is a small-scale agriculture crop compared to common bean (Phaseolusvulgaris). Beans have been introduced to Europe from the Central America to Europe and since then they have been scattered to different geographical regions. This has resulted in the generation of numerous local cultivars and landraces with distinguished characters and adaptive potential. To identify and characterize the underlying genomic variation of two very closely related runner bean cultivars, we performed RNA-Seq with de novo transcriptome assembly in two landraces of P. coccineus, 'Gigantes' and 'Elephantes' phenotypically distinct, differing in seed size and shape. The cleaned reads generated 37,379 and 37,774 transcripts for 'Gigantes' and 'Elephantes,' respectively. A total of 1896 DEGs were identified between the two cultivars, 1248 upregulated in 'Elephantes' and 648 upregulated in 'Gigantes.' A significant upregulation of defense-related genes was observed in 'Elephantes,' among those, numerous members of the AP2-EREBP, WRKY, NAC, and bHLH transcription factor families. In total, 3956 and 4322 SSRs were identified in 'Gigantes' and 'Elephantes,' respectively. Trinucleotide repeats were the most dominant repeat motif, accounting for 41.9% in 'Gigantes' and 40.1% in 'Elephantes' of the SSRs identified, followed by dinucleotide repeats (29.1% in both cultivars). Additionally, 19,281 putative SNPs were identified, among those 3161 were non-synonymous, thus having potential functional implications. High-confidence non-synonymous SNPs were successfully validated with an HRM assay, which can be directly adopted for P. coccineus molecular breeding. These results significantly expand the number of polymorphic markers within P. coccineus genus, enabling the robust identification of runner bean cultivars, the construction of high-resolution genetic maps, potentiating genome-wide association studies. They finally contribute to the genetic reservoir for the improvement of the closely related and intercrossable Phaseolus vulgaris.
Assuntos
Produtos Agrícolas/genética , Variação Genética , Genoma de Planta , Phaseolus/genética , Transcriptoma , Marcadores Genéticos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Aspergillus is a diverse genus of fungi with high economic and social impact. Various species that belong to section Nigri (black aspergilli) are common agents of grape spoilage and potent producers of ochratoxin A (OTA), a mycotoxin associated with various nephrotoxic and immunotoxic effects in humans. Black aspergilli are difficult to classify following only phenotypic criteria; thus chemotaxonomic and molecular methods are employed in parallel with phenotypic ones for species characterization. These approaches, though accurate and replicable, require more than one individual step and are to a certain extent laborious when a rapid identification of these species is required. RESULTS: The aim of this study was to develop a high-resolution melting polymerase chain reaction (HRM-PCR) assay as a rapid method for identification of Aspergillus spp. section Nigri isolates and their detection in grape samples. Melt curve analysis of amplicons originating from the internal transcribed spacer 2 (ITS2) ribosomal region generated species-specific HRM curve profiles, enabling the accurate differentiation of the analyzed genotypes. Furthermore, the assay was able to identify A. carbonarius, A. tubingensis, A. niger, A. ibericus and A. japonicus in grape samples artificially inoculated with conidia of these fungi. CONCLUSION: To our knowledge this is the first report on the development of an HRM-PCR assay for the identification of black Aspergillus species in grape samples. © 2018 Society of Chemical Industry.
Assuntos
Aspergillus/isolamento & purificação , Técnicas de Tipagem Micológica/métodos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Vitis/microbiologia , Aspergillus/classificação , Aspergillus/genética , DNA Fúngico/química , DNA Fúngico/genética , Temperatura de TransiçãoRESUMO
MAIN CONCLUSION: As a result of this work, we were able to characterize seven indigenous to Greece Salvia officinalis populations using genetic and metabolomic tools. These tools can be used to select the most promising genotypes, capable to design future breeding programs for high valuable varieties. An initial investigation was carried out to compare the genetic and metabolic diversity in S. officinalis grown in Greece and to discern the relationship between the two sets of data. Analysis of inter-simple sequence repeats (ISSR) revealed significant genetic differences among seven sage populations, which were grouped into three main clusters according to an UPGMA ISSR data-based dendrogram and Principle Coordinate Analysis. 80 loci were scored of which up to 90% were polymorphic at species level. According to the composition of their essential oil, the populations were classified into two chemotypes: 1.8 cineole/α-thujone and α-thujone/1.8 cineole. Additionally, a targeted ultra performance liquid chromatography (UPLC-MS/MS) method was used to qualify and quantify phenolic compounds in methanolic extracts of the seven sage genotypes according to which they were districted in six clusters among the sage populations. The main compounds characterizing the seven genotypes were rosmarinic acid and carnosol, followed by apigenin-7-O-glucoside (Ap7glc), and luteolin-7-O-glucoside (Lu7glc). The correlation between matrices obtained from ISSR data and metabolic profiles was non-significant. However, based on the differences in metabolic fingerprint, we aimed to define populations using as main selection criteria the high polyphenol content and desired essential oil composition, using state to the art analytical tools for the identification of parent lines for breeding programs.
Assuntos
Variação Genética , Metaboloma , Óleos Voláteis/classificação , Polifenóis/metabolismo , Salvia officinalis/genética , Monoterpenos Bicíclicos , Cruzamento , Cicloexanóis/classificação , Cicloexanóis/metabolismo , Eucaliptol , Flavonas/classificação , Flavonas/metabolismo , Genética Populacional , Genótipo , Glucosídeos/classificação , Glucosídeos/metabolismo , Monoterpenos/classificação , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Salvia officinalis/metabolismoRESUMO
Identification of genotypes in Sideritis is complicated owing to the morphological similarity and common occurrence of natural hybridisation within Sideritis species. Species- and genotype-specific DNA markers are very useful for plant identification, breeding and preservation programs. Herein, a real-time polymerase chain reaction (PCR) of ITS2 barcode region coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on seven Sideritis species growing in Greece. The HRM assay developed in this study is a rapid and straightforward method for the identification and discrimination of the investigated Sideritis species. This assay is simple compared to other genotyping methods as it does not require DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of Sideritis species.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Técnicas de Genotipagem/métodos , Sideritis/classificação , Sideritis/genética , Sequência de Bases , Primers do DNA/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Marcadores Genéticos , Grécia , Dados de Sequência Molecular , Filogenia , Filogeografia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de SequênciaRESUMO
By applying three different LED light treatments, designated as blue (B), red (R)/blue (B), red (R) and white (W) light, as well as the control, the effect on Diplotaxis tenuifolia phenotype (yield and quality), and physiological, biochemical, and molecular status, as well as growing system resource use efficiency, was examined. We observed that basic leaf characteristics, such as leaf area, leaf number, relative chlorophyll content, as well as root characteristics, such as total root length and root architecture, remained unaffected by different LEDs. Yield expressed in fresh weight was slightly lower in LED lights than in the control (1113 g m-2), with R light producing the least (679 g m-2). However, total soluble solids were significantly affected (highest, 5.5° Brix, in R light) and FRAP was improved in all LED lights (highest, 191.8 µg/g FW, in B) in comparison to the control, while the nitrate content was less (lowest, 949.2 µg/g FW, in R). Differential gene expression showed that B LED light affected more genes in comparison to R and R/B lights. Although total phenolic content was improved under all LED lights (highest, 1.05 mg/g FW, in R/B), we did not detect a significant amount of DEGs in the phenylpropanoid pathway. R light positively impacts the expression of the genes encoding for photosynthesis components. On the other hand, the positive impact of R light on SSC was possibly due to the expression of key genes being induced, such as SUS1. In summary, this research is an integrative and innovative study, where the exploration of the effect of different LED lights on rocket growing under protected cultivation, in a closed chamber cultivation system, was performed at multiple levels.
RESUMO
The term "terroir" has been widely employed to link differential geographic phenotypes with sensorial signatures of agricultural food products, influenced by agricultural practices, soil type, and climate. Nowadays, the geographical indications labeling has been developed to safeguard the quality of plant-derived food that is linked to a certain terroir and is generally considered as an indication of superior organoleptic properties. As the dynamics of agroecosystems are highly intricate, consisting of tangled networks of interactions between plants, microorganisms, and the surrounding environment, the recognition of the key molecular components of terroir fingerprinting remains a great challenge to protect both the origin and the safety of food commodities. Furthermore, the contribution of microbiome as a potential driver of the terroir signature has been underestimated. Herein, we present a first comprehensive view of the multi-omic landscape related to transcriptome, proteome, epigenome, and metagenome of the popular Protected Geographical Indication potatoes of Naxos.
RESUMO
Dill (Anethum graveolens L.) is an aromatic herb widely used in the food industry, with several commercial cultivars available with different qualitative characteristics. Commercial cultivars are usually preferred over landraces due to their higher yield and also the lack of improved landraces than can be commercialized. In Greece, however, traditional dill landraces are cultivated by local communities. Many are conserved in the Greek Gene Bank and the aim here was to investigate and compare the morphological, genetic, and chemical biodiversity of twenty-two Greek landraces and nine modern/commercial cultivars. Multivariate analysis of the morphological descriptors, molecular markers, and essential oil and polyphenol composition revealed that the Greek landraces were clearly distinguished compared with modern cultivars at the level of phenological, molecular and chemical traits. Landraces were typically taller, with larger umbels, denser foliage, and larger leaves. Plant height, density of foliage, density of feathering as well as aroma characteristics were desirable traits observed for some landraces, such as T538/06 and GRC-1348/04, which were similar or superior to those of some commercial cultivars. Polymorphic loci for inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular markers were 76.47% and 72.41% for landraces, and 68.24% and 43.10% for the modern cultivars, respectively. Genetic divergence was shown, but not complete isolation, indicating that some gene flow may have occurred between landraces and cultivars. The major constituent in all dill leaf essential oils was α-phellandrene (54.42-70.25%). Landraces had a higher α-phellandrene and dill ether content than cultivars. Two dill landraces were rich in chlorogenic acid, the main polyphenolic compound determined. The study highlighted for the first-time Greek landraces with desirable characteristics regarding quality, yield, and harvest time suitable for breeding programs to develop new dill cultivars with superior features.
Assuntos
Anethum graveolens , Essências Florais , Óleos Voláteis , Anethum graveolens/genética , Genótipo , Melhoramento Vegetal , Óleos Voláteis/química , Análise MultivariadaRESUMO
The traditionally edible aerial parts of rock samphire (Crithmum maritimum L.) could be a valuable functional food or feed ingredient due to their high antioxidant capacity, ascorbic acid content, and rich content in secondary metabolites such as phenolics and flavonoids. The first objective of this study was to evaluate eighteen genotypes derived from different regions of Greece regarding the phytochemical contents of their soluble extracts in total phenolics, total flavonoids, and individual polyphenols as determined by LC-MS analysis, as well as ascorbic acid content and their antioxidant capacity as determined by different assays, including ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and FRAP (ferric reducing antioxidant power) assays. The second objective of the study was the molecular characterization of native Greek C. maritimum genotypes. Great variation among genotypes was observed in terms of the antioxidant capacity, ascorbic acid content, and phenolic compounds (total phenolic content and total flavonoid content), as well as in caffeolquinic acids and flavonoids. The principal component analysis highlighted genotypes with a higher potential in antioxidants and polyphenolics. The most promising genotypes were G9 from Kefalonia, followed by G4 from Ikaria, where both clearly exhibited a similar response with high values of evaluated traits. The molecular characterization of genotypes revealed low variability and low to moderate genetic diversity between populations. Our data indicated that the rock samphire germplasm collection from the Balkan Botanic Garden of Kroussia could serve as an important source of documented genetic material and, thus, it is suggested for further investigation to provide insight regarding cultivation and agro-processing aspects, artificial selection, or plant breeding aimed at developing C. maritimum genotypes of high-bioactive value.
RESUMO
Genome-wide transcriptome analysis is a method that produces important data on plant biology at a systemic level. The lack of understanding of the relationships between proteins and genes in plants necessitates a further thorough analysis at the proteogenomic level. Recently, our group generated a quantitative proteogenomic atlas of 15 sweet cherry (Prunus avium L.) cv. 'Tragana Edessis' tissues represented by 29,247 genes and 7584 proteins. The aim of the current study was to perform a targeted analysis at the gene/protein level to assess the structure of their relation, and the biological implications. Weighted correlation network analysis and causal modeling were employed to, respectively, cluster the gene/protein pairs, and reveal their cause-effect relations, aiming to assess the associated biological functions. To the best of our knowledge, this is the first time that causal modeling has been employed within the proteogenomics concept in plants. The analysis revealed the complex nature of causal relations among genes/proteins that are important for traits of interest in perennial fruit trees, particularly regarding the fruit softening and ripening process in sweet cherry. Causal discovery could be used to highlight persistent relations at the gene/protein level, stimulating biological interpretation and facilitating further study of the proteogenomic atlas in plants.
Assuntos
Frutas/genética , Genes de Plantas , Modelos Biológicos , Proteínas de Plantas/genética , Proteogenômica , Prunus avium/genética , Árvores/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Prunus avium/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimentoRESUMO
The current study characterizes the physicochemical, sensory and bioactive compound traits of twenty-two sweet cherry accessions, namely breeding lines, landraces and modern cultivars, embodying the majority of Greek germplasm. The evaluated accessions differ in several quality traits including colour parameters and textural properties as well as sensory attributes, such as taste intensity and overall acceptance. Significant differences in primary metabolites, including fructose, glucose, sorbitol, malic acid were recorded among tested accessions. All genotypes were rich in polyphenols, primarily in quercetin-3,4-O-diglucoside, esculetin, rutin and neochlorogenic acid. An anthocyanins-related discrimination among accessions was also obtained based on cyanidin-3-O-rutinoside and peonidin glycosides content. Overall, the cultivars 'Tsolakeika' and 'Bakirtzeika' exhibited the higher consumer acceptance while the cultivars 'Vasiliadi' and 'Tragana Edessis-Naousis' and especially the breeding line 'TxAg33' contained high polyphenol levels. These results represent a valuable resource for future breeding efforts for sweet cherry cultivars with improved nutritional quality traits.
Assuntos
Prunus avium/metabolismo , Antocianinas/metabolismo , Cor , Grécia , Melhoramento Vegetal , Polifenóis/metabolismoRESUMO
Vegetable grafting is extensively used today in agricultural production to control soil-borne pathogens, abiotic and biotic stresses and to improve phenotypic characteristics of the scion. Commercial vegetable grafting is currently practiced in tomato, watermelon, melon, eggplant, cucumber, and pepper. It is also regarded as a rapid alternative to the relatively slow approach of breeding for increased environmental-stress tolerance of fruit vegetables. However, even though grafting has been used for centuries, until today, there are still many issues that have not been elucidated. This review will emphasize on the important mechanisms taking place during grafting, especially the genomic interactions between grafting partners and the impact of rootstocks in scion's performance. Special emphasis will be drawn on the relation between vegetable grafting, epigenetics, and the changes in morphology and quality of the products. Recent advances in plant science such as next-generation sequencing provide new information regarding the molecular interactions between rootstock and scion. It is now evidenced that genetic exchange is happening across grafting junctions between rootstock and scion, potentially affecting grafting-mediated effects already recorded in grafted plants. Furthermore, significant changes in DNA methylation are recorded in grafted scions, suggesting that these epigenetic mechanisms could be implicated in grafting effects. In this aspect, we also discuss the process and the molecular aspects of rootstock scion communication. Finally, we provide with an extensive overview of gene expression changes recorded in grafted plants and how these are related to the phenotypic changes observed. Τhis review finally seeks to elucidate the dynamics of rootstock-scion interactions and thus stimulate more research on grafting in the future. In a future where sustainable agricultural production is the way forward, grafting could play an important role to develop products of higher yield and quality in a safe and "green" way.
RESUMO
Sweet cherries, Prunus avium L. (Rosaceae), are gaining importance due to their perenniallity and nutritional attributes beneficial for human health. Interestingly, sweet cherry cultivars exhibit a wide range of phenotypic diversity in important agronomic traits, such as flowering time and defense reactions against pathogens. In this study, whole-genome resequencing (WGRS) was employed to characterize genetic variation, population structure and allelic variants in a panel of 20 sweet cherry and one wild cherry genotypes, embodying the majority of cultivated Greek germplasm and a representative of a local wild cherry elite phenotype. The 21 genotypes were sequenced in an average depth of coverage of 33.91×. and effective mapping depth, to the genomic reference sequence of 'Satonishiki' cultivar, between 22.21× to 36.62×. Discriminant analysis of principal components (DAPC) with SNPs revealed two clusters of genotypes. There was a rapid linkage disequilibrium decay, as the majority of SNP pairs with r2 in near complete disequilibrium (>0.8) were found at physical distances less than 10 kb. Functional analysis of the variants showed that the genomic ratio of non-synonymous/synonymous (dN/dS) changes was 1.78. The higher dN frequency in the Greek cohort of sweet cherry could be the result of artificial selection pressure imposed by breeding, in combination with the vegetative propagation of domesticated cultivars through grafting. The majority of SNPs with high impact (e.g., stop codon gaining, frameshift), were identified in genes involved in flowering time, dormancy and defense reactions against pathogens, providing promising resources for future breeding programs. Our study has established the foundation for further large scale characterization of sweet cherry germplasm, enabling breeders to incorporate diverse germplasm and allelic variants to fine tune flowering and maturity time and disease resistance in sweet cherry cultivars.
RESUMO
Cucurbita pepo contains two cultivated subspecies, each of which encompasses four fruit-shape morphotypes (cultivar groups). The Pumpkin, Vegetable Marrow, Cocozelle, and Zucchini Groups are of subsp. pepo and the Acorn, Crookneck, Scallop, and Straightneck Groups are of subsp. ovifera. Recently, a de novo assembly of the C. pepo subsp. pepo Zucchini genome was published, providing insights into its evolution. To expand our knowledge of evolutionary processes within C. pepo and to identify variants associated with particular morphotypes, we performed whole-genome resequencing of seven of these eight C. pepo morphotypes. We report for the first time whole-genome resequencing of the four subsp. pepo (Pumpkin, Vegetable Marrow, Cocozelle, green Zucchini, and yellow Zucchini) morphotypes and three of the subsp. ovifera (Acorn, Crookneck, and Scallop) morphotypes. A high-depth resequencing approach was followed, using the BGISEQ-500 platform that enables the identification of rare variants, with an average of 33.5X. Approximately 94.5% of the clean reads were mapped against the reference Zucchini genome. In total, 3,823,977 high confidence single-nucleotide polymorphisms (SNPs) were identified. Within each accession, SNPs varied from 636,918 in green Zucchini to 2,656,513 in Crookneck, and were distributed homogeneously along the chromosomes. Clear differences between subspecies pepo and ovifera in genetic variation and linkage disequilibrium are highlighted. In fact, comparison between subspecies pepo and ovifera indicated 5710 genes (22.5%) with Fst > 0.80 and 1059 genes (4.1%) with Fst = 1.00 as potential candidate genes that were fixed during the independent evolution and domestication of the two subspecies. Linkage disequilibrium was greater in subsp. ovifera than in subsp. pepo, perhaps reflective of the earlier differentiation of morphotypes within subsp. ovifera. Some morphotype-specific genes have been localized. Our results offer new clues that may provide an improved understanding of the underlying genomic regions involved in the independent evolution and domestication of the two subspecies. Comparisons among SNPs unique to particular subspecies or morphotypes may provide candidate genes responsible for traits of high economic importance.