Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Endocrinol ; 263(1)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39045853

RESUMO

Ghrelin has effects that range from the maturation of the central nervous system to the regulation of energy balance. The production of ghrelin increases significantly during the first weeks of life. Studies have addressed the metabolic effects of liver-expressed antimicrobial peptide 2 (LEAP2) in inhibiting the effects evoked by ghrelin, mainly in glucose homeostasis, insulin resistance, and lipid metabolism. Despite the known roles of ghrelin in the postnatal development, little is known about the long-term metabolic influences of modulation with the endogenous expressed growth hormone secretagogue receptor (GHSR) inverse agonist LEAP2. This study aimed to evaluate the contribution of GHSR signalling during perinatal phases, to neurodevelopment and energy metabolism in young animals, under inverse antagonism by LEAP2[1-14]. For this, two experimental models were used: (i) LEAP2[1-14] injections in female rats during the pregnancy. (ii) Postnatal modulation of GHSR with LEAP2[1-14] or MK677. Perinatal GHSR modulation by LEAP2[1-14] impacts glucose homeostasis in a sex and phase-dependent manner, despite no effects on body weight gain or food intake. Interestingly, liver PEPCK expression was remarkably impacted by LEAP2 injections. The observed results suggests that perinatal LEAP2 exposure can modulate liver metabolism and systemic glucose homeostasis. In addition, these results, although not expressive, may just be the beginning of the metabolic imbalance that will occur in adulthood.


Assuntos
Fígado , Receptores de Grelina , Animais , Fígado/metabolismo , Receptores de Grelina/metabolismo , Receptores de Grelina/genética , Feminino , Ratos , Gravidez , Masculino , Transdução de Sinais , Grelina/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ratos Wistar , Metabolismo Energético , Maturidade Sexual/fisiologia , Glucose/metabolismo , Proteínas Sanguíneas
2.
Front Vet Sci ; 11: 1380415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818493

RESUMO

Narcotic Detection Dogs (NDDs) are essential tools in the fight against drug trafficking, acting with high precision and improving efficiency at border posts. When trained efficiently, these dogs can detect a great variety of compounds, such as cocaine, marijuana and its derivatives, and synthetic drugs, among others. Most of the knowledge on canine detection processes and efficiency has been determined in experimentally controlled conditions, but narcotic seizures detected by dogs in realistic anti-drug operations have not yet been critically determined in a Country with continental dimensions such as Brazil. This study aimed to evaluate the data set concerning the performance, operations, efficiency, and success rate of NDDs used by the Brazilian Customs Authority (Aduana) in the fight against drug trafficking. Narcotic seizure rates increased in luggage and packages detected by NDDs working at border crossings from 2010 to 2020, with an estimated value of over US$ 2 billion in losses to the cocaine drug trafficking business. NDD units also increased most narcotic groups seized in the same period. The number of NDDs and anti-drug operations, and Customs Border Post (CBP) influenced the rates of drugs seized. NDDs provided an increase of 3,157 kg/animal of drugs seized for every new dog introduced into the inspection systems.

3.
Nutrients ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999777

RESUMO

BACKGROUND: Though maternal diabetes effects are well described in the literature, the effects of maternal diabetes in postnatal phases are often overlooked. Diabetic individuals have higher levels of circulating glycotoxins, and there is a positive correlation between maternal-derived glycotoxins and circulating glycotoxins in their progeny. Previous studies evaluated the metabolic effects of high glycotoxin exposure during lactation in adult animals. However, here we focus on the cardiovascular system of juvenile rats. METHODS: For this, we used two experimental models: 1. High Methylglyoxal (MG) environment: pregnant Wistar rats were injected with PBS (VEH group) or Methylglyoxal (MG group; 60 mg/kg/day; orally, postnatal day (PND) 3 to PND14). 2. GLO-1 inhibition: pregnant Wistar rats were injected with dimethyl sulfoxide (VEH group) or a GLO-1 inhibitor (BBGC group; 5 mg/kg/day; subcutaneously, PND1-PND5). The offspring were evaluated at PND45. RESULTS: MG offspring presented cardiac dysfunction and subtly worsened vasomotor responses in the presence of perivascular adipose tissue, without morphological alterations. In addition, an endogenous increase in maternal glycotoxins impacts offspring vasomotricity due to impaired redox status. CONCLUSIONS: Our data suggest that early glycotoxin exposure led to cardiac and vascular impairments, which may increase the risk for developing cardiovascular diseases later in life.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Aldeído Pirúvico , Ratos Wistar , Animais , Feminino , Aldeído Pirúvico/toxicidade , Gravidez , Ratos , Sistema Cardiovascular/efeitos dos fármacos , Masculino , Doenças Cardiovasculares/induzido quimicamente
4.
J Dev Orig Health Dis ; 15: e9, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721989

RESUMO

Sodium overload during childhood impairs baroreflex sensitivity and increases arterial blood pressure and heart rate in adulthood; these effects persist even after high-salt diet (HSD) withdrawal. However, the literature lacks details on the effects of HSD during postnatal phases on cardiac ischemia/reperfusion responses in adulthood. The current study aimed to elucidate the impact of HSD during infancy adolescence on isolated heart function and cardiac ischemia/reperfusion responses in adulthood. Male 21-day-old Wistar rats were treated for 60 days with hypertonic saline solution (NaCl; 0.3M; experimental group) or tap water (control group). Subsequently, both groups were maintained on a normal sodium diet for 30 days. Subsequently, the rats were euthanized, and their hearts were isolated and perfused according to the Langendorff technique. After 30 min of the basal period, the hearts were subjected to 20 min of anoxia, followed by 20 min of reperfusion. The basal contractile function was unaffected by HSD. However, HSD elevated the left ventricular end-diastolic pressure during reperfusion (23.1 ± 5.2 mmHg vs. 11.6 ± 1.4 mmHg; p < 0.05) and increased ectopic incidence period during reperfusion (208.8 ± 32.9s vs. 75.0 ± 7.8s; p < 0.05). In conclusion, sodium overload compromises cardiac function after reperfusion events, diminishes ventricular relaxation, and increases the severity of arrhythmias, suggesting a possible arrhythmogenic effect of HSD in the postnatal phases.


Assuntos
Arritmias Cardíacas , Traumatismo por Reperfusão Miocárdica , Ratos Wistar , Animais , Ratos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Diástole/fisiologia , Cloreto de Sódio na Dieta/efeitos adversos , Frequência Cardíaca/fisiologia
5.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(4): 434-440, July-Aug. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394070

RESUMO

Follow-up of patients affected by COVID-19 has unveiled remarkable findings. Among the several sequelae caused by SARS-CoV-2 viral infection, it is particularly noteworthy that patients are prone to developing depression, anxiety, cognitive disorders, and dementia as part of the post-COVID-19 syndrome. The multisystem aspects of this disease suggest that multiple mechanisms may converge towards post-infection clinical manifestations. The literature provides mechanistic hypotheses related to changes in classical neurotransmission evoked by SARS-CoV-2 infection; nonetheless, the interaction of peripherally originated classical and non-canonic peptidergic systems may play a putative role in this neuropathology. A wealth of robust findings shows that hemoglobin-derived peptides are able to control cognition, memory, anxiety, and depression through different mechanisms. Early erythrocytic death is found during COVID-19, which would cause excess production of hemoglobin-derived peptides. Following from this premise, the present review sheds light on a possible involvement of hemoglobin-derived molecules in the COVID-19 pathophysiology by fostering neuroscientific evidence that supports the contribution of this non-canonic peptidergic pathway. This rationale may broaden knowledge beyond the currently available data, motivating further studies in the field and paving ways for novel laboratory tests and clinical approaches.

6.
Hematol., Transfus. Cell Ther. (Impr.) ; 44(2): 235-245, Apr.-June 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1385065

RESUMO

Abstract Introduction The evolving COVID-19 pandemic became a hallmark in human history, not only by changing lifestyles, but also by enriching scientific knowledge on viral infection and its consequences. Objective Although the management of cardiorespiratory changes is pivotal to a favorable prognosis during severe clinical findings, dysregulation of other systems caused by SARS-CoV-2 infection may imbalance erythrocyte dynamics, such as a bidirectional positive feedback loop pathophysiology. Method and Results Recent evidence shows that SARS-CoV-2 is capable of affecting the genetics and dynamics of erythrocytes and this coexists with a non-homeostatic function of cardiovascular, respiratory and renal systems during COVID-19. In hypothesis, SARS-CoV-2-induced systematical alterations of erythrocytes dynamics would constitute a setpoint for COVID-19-related multiple organ failure syndrome and death. Conclusion The present review covers the most frequent erythrocyte-related non-homeostatic findings during COVID-19 capable of providing mechanistic clues of SARS-CoV-2-induced infection and inspiring therapeutic-oriented scientific evidence.


Assuntos
Eritrócitos , SARS-CoV-2 , COVID-19/mortalidade , Prognóstico , Hemoglobinas , Doenças Hematológicas
7.
Ciênc. rural (Online) ; 50(10): e20191010, 2020.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1133190

RESUMO

ABSTRACT: Considered one of the best odor detectors, dogs go through a rigorous selection and training process. Based on learning theories, modern techniques are used for dog training, respecting individual characteristics, efficiency, and well-being. Since narcotics detection work is perceived as a "play" for the dog, in practice, this promotes a high use rate in the service. The performance of handlers influences the work of the dogs, and well-trained and well-run dogs must work comfortably and accurately. This paper aimed to review the aspects related to the selection, training, and performance of narcotics detection dogs.


RESUMO: Considerado um dos melhores detectores de odores, os cães passam por um rigoroso processo de seleção e treinamento. Baseado nas teorias da aprendizagem, utilizam-se técnicas modernas para a formação do cão respeitando suas características individuais, eficiência e o bem-estar. Uma vez que o trabalho de detecção de narcóticos seja entendido como uma grande brincadeira para o cão, isso na prática promove um alto índice de aproveitamento no serviço. O desempenho dos condutores influencia o trabalho dos cães, que bem treinados e bem conduzidos, devem trabalhar de forma confortável e precisa. Este trabalho objetiva revisar aspectos relacionados à seleção, formação e desempenho dos cães de detecção (K9) de narcóticos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA