Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926150

RESUMO

ConspectusLithium-sulfur batteries (LSBs), recognized for their high energy density and cost-effectiveness, offer significant potential for advancement in energy storage. However, their widespread deployment remains hindered by challenges such as sluggish reaction kinetics and the shuttle effect of lithium polysulfides (LiPSs). By the introduction of catalytic materials, the effective adsorption of LiPSs, smooth surface migration behavior, and significantly reduced conversion energy barriers are expected to be achieved, thereby sharpening electrochemical reaction kinetics and fundamentally addressing the aforementioned challenges. However, driven by practical application targets, the demand for higher loadings and reduced electrolyte parameters inevitably exacerbates the burden on catalytic materials during their service. Additionally, given that catalytic materials contribute negligible electrochemical capacity, their incorporation inevitably increases the mass of nonactive components for reducing the energy density of LSBs. A meticulous insight into the lithium-sulfur catalytic reaction reveals that the conversion of LiPSs is dominated by active sites on the surfaces of catalytic materials. These microregions provide the necessary electron and ion transport for the conversion reaction of LiPSs, with their efficacy and quantity directly impacting the conversion efficiency. In light of these considerations, the strategic optimization of active sites emerges as a paramount pathway toward promoting the performance of LSBs while concurrently mitigating unnecessary mass. Here, we outline three strategies developed by our group to optimize active sites of catalytic materials: (1) Augmenting active sites by customizing structural modulation and precise dimensional control to maximize exposure. Emphasis has been placed on the approaches for material synthesis and the essence of reactions for achieving this strategy. (2) Regulating the microenvironment of active sites by integrating the coordination refinement, long-range atomic interactions, metal-support interactions, and other electronic regulation strategies, thereby providing an elevation in the intrinsic catalytic performance. (3) Implementing a self-cleaning mechanism for active sites to counteract deactivation by designing a tandem adsorption-migration-transformation pathway of sulfur contained within the molecular domain. Throughout this process, the intrinsic mechanisms driving performance enhancement through active site optimization strategies have been prominently emphasized, which encompass aspects such as electronic structure, atomic composition, and molecular configuration and significantly expand the comprehension of Li-S catalytic chemistry. Subsequently, considerations demanding heightened attention in future processes of active site optimization for catalytic materials have been delineated, including the in situ evolution patterns and resistance to the poisoning of active sites. It is noteworthy that given the similarity between Li-S catalysis chemistry and traditional electrocatalytic processes, this Account elucidates the concept of active site optimization by drawing insights from representative works and our own works in the field of electrocatalysis, which is relatively rare in previous reviews of LSBs. The proposed insights contribute to uncovering the intrinsic mechanisms of Li-S catalysis chemistry and introducing innovative ideas into active site optimization, ultimately advancing energy density and stability in LSBs.

2.
Small ; 20(23): e2309422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200681

RESUMO

The notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides (Li2S4, Li2S6, Li2S8) are severely hindered the large-scale development of Lithium-sulfur (Li-S) batteries. Rectifying interface effect has been a solution to regulate the electron distribution of catalysts via interfacial charge exchange. Herein, a ZnTe-ZnO heterojunction encapsulated in nitrogen-doped hierarchical porous carbon (ZnTe-O@NC) derived from metal-organic framework is fabricated. Theoretical calculations and experiments prove that the built-in electric field constructed at ZnTe-ZnO heterojunction via the rectifying interface contact, thus promoting the charge transfer as well as enhancing adsorption and conversion kinetics toward polysulfides, thereby stimulating the catalytic activity of the ZnTe. Meanwhile, the nitrogen-doped hierarchical porous carbon acts as confinement substrate also enables fast electrons/ions transport, combining with ZnTe-ZnO heterojunction realize a synergistic confinement-adsorption-catalysis toward polysulfides. As a result, the Li-S batteries with S/ZnTe-O@NC electrodes exhibit an impressive rate capability (639.7 mAh g-1 at 3 C) and cycling performance (70% capacity retention at 1 C over 500 cycles). Even with a high sulfur loading, it still delivers a superior electrochemical performance. This work provides a novel perspective on designing highly catalytic materials to achieve synergistic confinement-adsorption-catalysis for high-performance Li-S batteries.

3.
Small ; : e2312187, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501874

RESUMO

Zn dendrite growth and side reactions restrict the practical use of Zn anode. Herein, the design of a novel 3D hierarchical structure is demonstrated with self-zincophilic dual-protection constructed by ZnO and Zn nanoparticles immobilized on carbon fibers (ZnO/Zn⊂CF) as a versatile host on the Zn surface. The unique 3D frameworks with abundant zinc nucleation storage sites can alleviate the structural stress during the plating/stripping process and overpower Zn dendrite growth by moderating Zn2+ flux. Moreover, given the dual protection design, it can reduce the contact area between active zinc and electrolyte, inhibiting hydrogen evolution reactions. Importantly, density functional theory calculations and experimental results confirm that the introduced O atoms in ZnO/Zn⊂CF enhance the interaction between Zn2+ and the host and reduce Zn nucleation overpotential. As expected, the ZnO/Zn⊂CF-Zn electrode exhibits stable Zn plating/stripping with low polarization for 4200 h at 0.2 mA cm-2 and 0.2 mAh cm-2 . Furthermore, the symmetrical cell displays a significantly long cycling life of over 1800 h, even at 30 mA cm-2 . The fabricated full cells also show impressive cycling performance when coupled with V2 O3 cathodes.

4.
Inorg Chem ; 63(19): 8853-8862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38692832

RESUMO

Li-S batteries are hampered by problems with their cathodes and anodes simultaneously. The improvement of Li-S batteries needs to consider both the anode and cathode. Herein, a Bi2Se3@MXene composite is prepared for the first time by rapidly growing Bi2Se3 nanodots on two-dimensional (2D) MXene nanosheets at room temperature through simply adding high-reactive hydroxyethylthioselenide in Bi3+/MXene aqueous solution. Bi2Se3@MXene exhibits a 2D structure due to the template effect of 2D MXene. Bi2Se3@MXene can not only facilitate the conversion of lithium polysulfides (LiPSs) but also inhibit their shuttling in the S cathode due to its catalytic effect and adsorption force with LiPSs. Bi2Se3@MXene can also be used as an interfacial lithiophilic layer to inhibit Li dendrite growth in the Li metal anode. Theoretical calculations reveal that Bi2Se3 nanodots in Bi2Se3@MXene can effectively boost the adsorption ability with LiPSs, and the MXene in Bi2Se3@MXene can accelerate the electron transport. Under the bidirectional regulation of Bi2Se3@MXene in the Li metal anode and S cathode, the Li-S battery shows an enhanced electrochemical performance.

5.
Angew Chem Int Ed Engl ; 63(19): e202402069, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38466145

RESUMO

The advanced aqueous zinc-ion batteries (AZIBs) are still challenging due to the harmful reactions including hydrogen evolution and corrosion. Here, a natural small molecule acid vitamin C (Vc) as an aqueous electrolyte additive has been selectively identified. The small molecule Vc can adjust the d band center of Zn substrate which fixes the active H+ so that the hydrogen evolution reaction (HER) is restrained. Simultaneously, it could also fine-tune the solvation structure of Zn ions due to the enhanced electrostatics and reduced Pauli repulsion verified by energy decomposition analysis (EDA). Hence, the cell retains an ultra-long cycle performance of over 1300 cycles and a superior Coulombic efficiency (CE) of 99.5 %. The prepared full cells display increased rate capability, cycle lifetime, and self-discharge suppression. Our results shed light on the mechanistic principle of electrolyte additives on the performance improvement of ZIBs, which is anticipated to render a new round of studies.

6.
Small ; 19(29): e2208281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026655

RESUMO

The "shuttle effect" and slow conversion kinetics of lithium polysulfides (LiPSs) are stumbling block for high-energy-density lithium-sulfur batteries (LSBs), which can be effectively evaded by advanced catalytic materials. Transition metal borides possess binary LiPSs interactions sites, aggrandizing the density of chemical anchoring sites. Herein, a novel core-shelled heterostructure consisting of nickel boride nanoparticles on boron-doped graphene (Ni3 B/BG), is synthesized through a graphene spontaneously couple derived spatially confined strategy. The integration of Li2 S precipitation/dissociation experiments and density functional theory computations demonstrate that the favorable interfacial charge state between Ni3 B and BG provides smooth electron/charge transport channel, which promotes the charge transfer between Li2 S4 -Ni3 B/BG and Li2 S-Ni3 B/BG systems. Benefitting from these, the facilitated solid-liquid conversion kinetics of LiPSs and reduced energy barrier of Li2 S decomposition are achieved. Consequently, the LSBs employed the Ni3 B/BG modified PP separator deliver conspicuously improved electrochemical performances with excellent cycling stability (decay of 0.07% per cycle for 600 cycles at 2 C) and remarkable rate capability of 650 mAh g-1 at 10 C. This study provides a facile strategy for transition metal borides and reveals the effect of heterostructure on catalytic and adsorption activity for LiPSs, offering a new viewpoint to apply boride in LSBs.

7.
Chemistry ; 29(11): e202203031, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36345668

RESUMO

The practical application of lithium-sulfur (Li-S) batteries is greatly hindered by the shuttle effect of dissolved polysulfides in the sulfur cathode and the severe dendritic growth in the lithium anode. Adopting one type of effective host with dual-functions including both inhibiting polysulfide dissolution and regulating Li plating/stripping, is recently an emerging research highlight in Li-S battery. This review focuses on such dual-functional hosts and systematically summarizes the recent research progress and application scenarios. Firstly, this review briefly describes the stubborn issues in Li-S battery operations and the sophisticated counter measurements over the challenges by dual-functional behaviors. Then, the latest advances on dual-functional hosts for both cathode and anode in Li-S full cells are catalogued as species, including metal chalcogenides, metal carbides, metal nitrides, heterostuctures, and the possible mechanisms during the process. Besides, we also outlined the theoretical calculation tools for the dual-functional host based on the first principles. Finally, several sound perspectives are also rationally proposed for fundamental research and practical development as guidelines.

8.
Nano Lett ; 22(1): 119-127, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931840

RESUMO

The search for large-capacity and high-energy-density cathode materials for aqueous Zn-ion batteries is still challenging. Here, an in situ electrochemical activation strategy to boost the electrochemical activity of a carbon-confined vanadium trioxide (V2O3@C) microsphere cathode is demonstrated. Tunnel-structured V2O3 undergoes a complete phase transition to a layered, amorphous, and oxygen-deficient Zn0.4V2O5-m·nH2O on the first charge, thus allowing subsequent (de)intercalation of zinc cations on the basis of the latter structure, which can be regulated by the amount of H2O in the electrolyte. The electrode thus delivers excellent stability with a significantly high capacity of 602 mAh g-1 over 150 cycles upon being subjected to a low-current-rate cycling, as well as a high-energy density of 439.6 Wh kg-1 and extended life up to 10000 cycles with a 90.3% capacity retention. This strategy will be exceptionally desirable to achieve ultrafast Zn-ion storage with high capacity and energy density.

9.
Angew Chem Int Ed Engl ; 62(49): e202314124, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37872117

RESUMO

Constructing atom-clusters (ACs) with in situ modulation of coordination environment and simultaneously hollowing carbon support are critical yet challenging for improving electrocatalytic efficiency of atomically dispersed catalysts (ADCs). Herein, a general diffusion-controlled strategy based on spatial confining and Kirkendall effect is proposed to construct metallic ACs in N,P,S triply-doped hollow carbon matrix (MACs /NPS-HC, M=Mn, Fe, Co, Ni, Cu). Thereinto, FeACs /NPS-HC with the best catalytic activity for oxygen reduction reaction (ORR) is thoroughly investigated. Unlike the benchmark sample of symmetrical N-surrounded iron single-atoms in N-doped carbon (FeSAs /N-C), FeACs /NPS-HC comprises bi-/tri-atomic Fe centers with engineered S/N coordination. Theoretical calculation reveals that proper Fe gathering and coordination modulation could mildly delocalize the electron distribution and optimize the free energy pathways of ORR. In addition, the triple doping and hollow structure of carbon matrix could further regulate the local environment and allow sufficient exposure of active sites, resulting in more enhanced ORR kinetics on FeACs /NPS-HC. The zinc-air battery assembled with FeACs /NPS-HC as cathodic catalyst exhibits all-round superiority to Pt/C and most Fe-based ADCs. This work provides an exemplary method for establishing atomic-cluster catalysts with engineered S-dominated coordination and hollowed carbon matrix, which paves a new avenue for the fabrication and optimization of advanced ADCs.

10.
Small ; 18(13): e2107819, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132781

RESUMO

Amorphous MoS3 has been an attractive electrode material for sodium-ion batteries and lithium-sulfur batteries. However, the potassium storage capability of amorphous MoS3 remains unreported. Herein, the construction of hybrid hierarchical microspheres composed of amorphous MoS3 nanosheets dual-confined with TiO2 core, and nitrogen-doped carbon shell layer (denoted as TiO2 @A-MoS3 @NC) via a self-templating method, combined with a low-temperature sulfurization process as a new anode material for potassium-ion batteries (PIBs), is reported. Benefitting from the unique structural merits including unique 1D chain structure, disordered arrangement of atoms and a large number of defects of amorphous MoS3 , more active heterointerfacial sites, effectively mitigated volume change, good electrical contact, and easy K+ ion migration, the TiO2 @A-MoS3 @NC microspheres exhibit excellent potassium-storage performance with high specific capacity, superior rate capability, and cycling stability.

11.
Small ; 18(37): e2203947, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35980940

RESUMO

The improvement of lithium-sulfur batteries is still impeded by notorious shuttling effect and sluggish kinetics on the S cathode, and rampant Li dendrite formation on the Li anode makes it worse. Herein, a type of single-atom dispersed Mo on nitrogen-doped graphene (Mo/NG) with a distinctive Mo-N2 O2 -C coordination structure first serving as a multifunctional material is designed by a structure-oriented strategy to solve Li and S electrochemistry. Mo/NG with superior intrinsic properties endowed by the unique coordination configuration adsorbs soluble polysulfides and promotes bidirectional conversion of LiPSs at the cathode side. Meanwhile, the suitable binding strength of Mo/NG with lithium ions endows it with an attractive lithiophilic feature. Specifically, Mo/NG is able to work as the adaptor to redistribute lithium ions on the interface of separator and homogenize the lithium ion flux. Due to the suitable binding ability with Li+ , it does not interfere with the diffusion of lithium ions across and provides tunnels exclusive to lithium ions to generate fast and homogeneous flux. Ascribed to such unique multifunctionality, Li-S batteries assembled with Mo/NG exhibit excellent electrochemical performance including long cycling stability over 1000 cycles and high areal capacities under high sulfur mass loading.

12.
Angew Chem Int Ed Engl ; 61(26): e202202200, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417080

RESUMO

The catalytic activity of main-group metal is hard to promote because of the intrinsic lack of host d orbitals available to be combined. Herein, under the guidance of theoretical predictions, we find atom-dispersed antimony sites (Sb-N4 moieties) can be activated to achieve high oxygen reduction reaction (ORR) activity using a functional group regulation strategy. Correspondingly, we manage to synthesize a main-group Sb single-atom catalysts (SACs) that comprises Sb-N4 active moieties functionalized by epoxy groups in the second microenvironment and incorporated in N-doped graphene (Sb1 /NG(O)). The electron-rich epoxy group can adjust the electronic structure of Sb-N4 active moieties, thereby optimizing the adsorption of the intermediate. The Sb SACs are comparable to industrial Pt/C under alkaline conditions. This discovery provides new opportunities to manipulate and improve the catalytic activity of main-group-element electrocatalysts.

13.
Angew Chem Int Ed Engl ; 61(7): e202116048, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34889508

RESUMO

The practical application of lithium-sulfur batteries is still limited by the lithium polysulfides (LiPSs) shuttling effect on the S cathode and uncontrollable Li-dendrite growth on the Li anode. Herein, elaborately designed WSe2 flakelets immobilized on N-doped graphene (WSe2 /NG) with abundant active sites are employed to be a dual-functional host for satisfying both the S cathode and Li anode synchronously. On the S cathode, the WSe2 /NG with a strong interaction towards LiPSs can act as a redox accelerator to promote the bidirectional conversion of LiPSs. On the Li anode, the WSe2 /NG with excellent lithiophilic features can regulate the uniform Li plating/stripping to mitigate the growth of Li dendrite. Taking advantage of these merits, the assembled Li-S full batteries exhibit remarkable rate performance and stable cycling stability even at a higher sulfur loading of 10.5 mg cm-2 with a negative to positive electrode capacity (N/P) ratio of 1.4 : 1.

14.
Small ; 17(44): e2103744, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553488

RESUMO

Lithium-sulfur battery (LSB) is regarded as a preferential option for next-generation energy-storage system, but the lithium polysulfides (LiPSs) shuttling effect and the uncontrollable growth of dendritic Li in the anode impede its commercial viability. To address both of the issues simultaneously, a well-designed hybrid of MgO ultrafine nanocrystals dispersed on graphene-supported carbon nanosheets (MCG) is developed via a facile self-template strategy as dual-functional host for both sulfur and lithium. Relying on the coordination of strong LiPS-capturing capability, the shuttling effect is inhibited. Furthermore, the lithiophilic configuration with high specific surface area induce homogenous Li deposition, thus preventing the formation of disordered lithium dendrite. Integrating all these advantages, a full cell based on S@MCG cathode and Li@MCG@Cu anode exhibits a stable capacity at 0.5 C for 150 cycles with a low capacity fading rate. Furthermore, the full cell achieves a high capacity retention of 85.5% at a high S areal loading of 3.82 mg cm-2 under the condition of a low electrolyte/sulfur ratio (E/S) of 6.5 µL mg-1 and negative/positive capacity ratio (N/P) of 3. This strategy satisfying both cathode and anode host provides a viable approach to realize high-energy-density and dendrite-free LSBs.

15.
Small ; 17(20): e2100318, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33864351

RESUMO

High-safety and low-cost aqueous Zn-ion batteries have triggered an astounding investigation surge in the last 5 years and are becoming competitive alternatives for grid-scale energy storage. However, the implementation of this promising technology is still plagued by the lack of effective and affordable cathode materials that can enable high energy densities and an exceptional cycling stability. Herein, a novel vanadium-based oxide cathode based on MgV2 O6 ·1.7H2 O nanobelts, which delivers a high capacity (425.7 mAh g-1 at 0.2 A g-1 ), a robust rate capability (182.1 mAh g-1 at 10 A g-1 ), and an ultrastable cycle without any visible deterioration, as well as an adequate energy density (331.6 Wh kg-1 ), is developed. Such excellent electrochemical Zn-ion storage performance is believed to result from the fast ion-diffusion kinetics boosted by a stable layered structure and an ultrahigh intercalation pseudocapacitance reaction, which are also benefited by a typical H+ /Zn2+ co-insertion mechanism, accompanied by an atypical Zn2+ intercalation chemistry with a partial but irreversible Mg2+ -Zn2+ ion-exchange reaction during the initial discharge. These results provide key and enlightening insights into the design of high-performance vanadium oxide cathode materials.

16.
Small ; 17(23): e2100414, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887114

RESUMO

In order to solve the problem that soluble polysulfide intermediates diffuse between cathode and anode during charging and discharging, which leads to rapid attenuation of battery cycle life, the separator modification materials come into people's sight. Herein, a mesoporous carbon-supported cobalt-nickel bimetal composite (CoNi@MPC) is synthesized and directly coated on the original separator to serve as a secondary collector for lithium-sulfur batteries. CoNi@MPC exhibits multiple Co-Ni active sites, able to catalyze the reactions of soluble polysulfides, specifically accelerating the generation and decomposition of insoluble Li2 S in lithiation and delithiation process testified by the electrochemical results and density functional theory calculation. Relying on the bifunctionality of CoNi@MPC composite, the shuttle effect of lithium polysulfides can be effectively alleviated. Moreover, porous carbon as the conductive scaffold favors the improvement of electronic conductivity. Benefiting from the above advantages, the cell with CoNi@MPC separator indicates significantly enhanced electrochemical performances with excellent cycling life over 500 cycles and superior rate capabilities.

17.
Nano Lett ; 20(11): 8375-8383, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33074006

RESUMO

Elaborate design of novel hybrid structures for hydrogen-evolution electrocatalysts is a crucial strategy for synergistically accelerating the reaction kinetics of water splitting. Herein, we prepare a three-dimensional (3D) sponge assembled by graphene nanocages (SGNCs) in which Ni nanoparticles and Ni single atoms coexist via a facile one-pot self-templating and self-catalytic strategy. Driven by simultaneous atomization and agglomeration under higher temperature, dual active sites of single atoms and nanoparticles are formed on graphene nanocages. Benefiting from the unique 3D porous structure and dual active sites, the SGNCs exhibit excellent hydrogen evolution reaction (HER) performance, which affords the current density of 10 mA cm-2 at a low overpotential of 27 mV. Theoretical calculations reveal that the interaction between single atoms and nanoparticles promotes HER kinetics. The controlled engineering strategy of non-noble metal-based hybrid materials provides prospects for innovative electrocatalyst development.

18.
Nano Lett ; 20(4): 2899-2906, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182083

RESUMO

Vanadium-based compounds with an open framework structure have become the subject of much recent investigation into aqueous zinc-ion batteries (AZIBs) due to high specific capacity. However, there are some issues with vanadium dissolution from a cathode framework as well as the generation of byproducts during discharge that should not be ignored, which could cause severe capacity deterioration and inadequate cycle life. Herein, we report several barium vanadate nanobelt cathodes constructed of two sorts of architectures, i.e., Ba1.2V6O16·3H2O and BaV6O16·3H2O (V3O8-type) and BaxV2O5·nH2O (V2O5-type), which are controllably synthesized by tuning the amount of barium precursor. Benefiting from the robust architecture, layered BaxV3O8-type nanobelts (Ba1.2V6O16·3H2O) exhibit superior rate capability and long-term cyclability owing to fast zinc-ion kinetics, enabled by efficiently suppressing cathode dissolution as well as greatly eliminating the generation of byproduct Zn4SO4(OH)6·xH2O, which provides a reasonable strategy to engineer cathode materials with robust architectures to improve the electrochemical performance of AZIBs.

19.
Nano Lett ; 20(10): 7342-7349, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32877198

RESUMO

Two-dimensional carbon architectures are attracting tremendous interests for various promising applications due to their outstanding electronic and mechanical properties, although it is a great challenge to rationally devise facile and operative methodologies to engineer their structural traits owing to complex synthetic processes. Herein, for the first time, we fabricate two-dimensional carbon nanoribbons via direct thermal exfoliation of one-dimensional Ni-based metal-organic framework (MOF) nanorods, in which interconnected graphitic carbon nanocages are self-assembled into a belt-like superstructure with carbon-encapsulated Ni nanoparticles immobilized on the surface. Due to the unparalleled structural superiority, the MOF-derived carbon nanobelts exhibit excellent catalytic performances in electrocatalytic hydrogen evolution. Importantly, the practical synthetic strategy may trigger the rapid development of carbon-based superstructures in many frontier fields.

20.
Angew Chem Int Ed Engl ; 60(28): 15563-15571, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904241

RESUMO

Use of catalytic materials is regarded as the most desirable strategy to cope with sluggish kinetics of lithium polysulfides (LiPSs) transformation and severe shuttle effect in lithium-sulfur batteries (LSBs). Single-atom catalysts (SACs) with 100 % atom-utilization are advantagous in serving as anchoring and electrocatalytic centers for LiPSs. Herein, a novel kind of tungsten (W) SAC immobilized on nitrogen-doped graphene (W/NG) with a unique W-O2 N2 -C coordination configuration and a high W loading of 8.6 wt % is proposed by a self-template and self-reduction strategy. The local coordination environment of W atom endows the W/NG with elevated LiPSs adsorption ability and catalytic activity. LSBs equipped with W/NG modified separator manifest greatly improved electrochemical performances with high cycling stability over 1000 cycles and ultrahigh rate capability. It indicates high areal capacity of 6.24 mAh cm-2 with robust cycling life at a high sulfur mass loading of 8.3 mg cm-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA