Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 855944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371115

RESUMO

Parnassia L., a perennial herbaceous genus in the family Celastraceae, consists of about 60 species and is mainly distributed in the Pan-Himalayan and surrounding mountainous regions. The taxonomic position and phylogenetic relationships of the genus are still controversial. Herein, we reassessed the taxonomic status of Parnassia and its intra- and inter-generic phylogeny within Celastraceae. To that end, we sequenced and assembled the whole plastid genomes and nuclear ribosomal DNA (nrDNA) of 48 species (74 individuals), including 25 species of Parnassia and 23 species from other genera of Celastraceae. We integrated high throughput sequence data with advanced statistical toolkits and performed the analyses. Our results supported the Angiosperm Phylogeny Group IV (APG IV) taxonomy which kept the genus to the family Celastraceae. Although there were topological conflicts between plastid and nrDNA phylogenetic trees, Parnassia was fully supported as a monophyletic group in all cases. We presented a first attempt to estimate the divergence of Parnassia, and molecular clock analysis indicated that the diversification occurred during the Eocene. The molecular phylogenetic results confirmed numerous taxonomic revisions, revealing that the morphological characters used in Parnassia taxonomy and systematics might have evolved multiple times. In addition, we speculated that hybridization/introgression might exist during genus evolution, which needs to be further studied. Similarly, more in-depth studies will clarify the diversification of characters and species evolution models of this genus.

2.
AoB Plants ; 13(1): plaa068, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33510891

RESUMO

The Qinghai-Tibetan Plateau (QTP) and adjacent areas are centres of diversity for several alpine groups. Although it is known that the QTP acted as a source area for diversification of the alpine genus Gentiana, the evolutionary processes underlying diversity in this genus, especially the formation of narrow endemics, are still poorly understood. Hybridization has been proposed as a driver of plant endemism in the QTP but few cases have been documented with genetic data. Here, we describe a new endemic species in Gentiana section Cruciata as G. hoae sp. nov., and explore its evolutionary history with complete plastid genomes and nuclear ribosomal internal transcribed spacer sequence data. Genetic divergence within G. hoae ~3 million years ago was followed by postglacial expansion on the QTP, suggesting Pleistocene glaciations as a key factor shaping the population history of G. hoae. Furthermore, a mismatch between plastid and nuclear data suggest that G. hoae participated in historical hybridization, while population sequencing show this species continues to hybridize with the co-occurring congener G. straminea in three locations. Our results indicate that hybridization may be a common process in the evolution of Gentiana and may be widespread among recently diverged taxa of the QTP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA