Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Genome Res ; 34(1): 134-144, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38191205

RESUMO

Large-scale genetic mutant libraries are powerful approaches to interrogating genotype-phenotype correlations and identifying genes responsible for certain environmental stimuli, both of which are the central goal of life science study. We produced the first large-scale CRISPR-Cas9-induced library in a nonmodel multicellular organism, Bombyx mori We developed a piggyBac-delivered binary genome editing strategy, which can simultaneously meet the requirements of mixed microinjection, efficient multipurpose genetic operation, and preservation of growth-defect lines. We constructed a single-guide RNA (sgRNA) plasmid library containing 92,917 sgRNAs targeting promoters and exons of 14,645 protein-coding genes, established 1726 transgenic sgRNA lines following microinjection of 66,650 embryos, and generated 300 mutant lines with diverse phenotypic changes. Phenomic characterization of mutant lines identified a large set of genes responsible for visual phenotypic or economically valuable trait changes. Next, we performed pooled context-specific positive screens for tolerance to environmental pollutant cadmium exposure, and identified KWMTBOMO12902 as a strong candidate gene for breeding applications in sericulture industry. Collectively, our results provide a novel and versatile approach for functional B. mori genomics, as well as a powerful resource for identifying the potential of key candidate genes for improving various economic traits. This study also shows the effectiveness, practicality, and convenience of large-scale mutant libraries in other nonmodel organisms.


Assuntos
Bombyx , Animais , Bombyx/genética , RNA Guia de Sistemas CRISPR-Cas , Mutagênese , Edição de Genes/métodos , Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas
2.
PLoS Pathog ; 19(10): e1011740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37851691

RESUMO

The Toll receptor signaling pathway is an important innate immune response of insects to pathogen infection; its extracellular signal transduction involves serine protease cascade activation. However, excessive or constitutive activation of the Toll pathway can be detrimental. Hence, the balance between activation and inhibition of the extracellular protease cascade must be tightly regulated to achieve favorable outcomes. Previous studies have shown that serpins-serine protease inhibitors-negatively regulate insect innate immunity by inhibiting extracellular protease cascade signaling. Although the roles of serpins in insect innate immunity are well described, the physiological mechanisms underlying their synergistic effects remain poorly understand. Here, we characterize the molecular mechanism by which serpin-1a and serpin-6 synergistically maintain immune homeostasis of the silkworm Toll pathway under physiological and pathological conditions. Through in vitro biochemical assays and in vivo bioassays, we demonstrate that clip-domain serine protease 2 (CLIP2), as the Toll cascade-activating terminal protease, is responsible for processing proSpätzle1 to induce the expression of antimicrobial peptides. Further biochemical and genetic analyses indicate that constitutively expressed serpin-1a and inducible serpin-6 synergistically target CLIP2 to maintain homeostasis of the silkworm Toll pathway under physiological and pathological conditions. Taken together, this study provides new insights into the precise regulation of Toll cascade activation signals in insect innate immune responses and highlights the importance and complexity of insect immune homeostasis regulation.


Assuntos
Bombyx , Serpinas , Animais , Serpinas/metabolismo , Bombyx/genética , Proteínas de Insetos/metabolismo , Serina Proteases/metabolismo , Homeostase
3.
Small ; 20(15): e2306912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009480

RESUMO

The integration of magnetic resonance imaging (MRI), cGAS-STING, and anti-CTLA-4 (aCTLA-4) based immunotherapy offers new opportunities for tumor precision therapy. However, the precise delivery of aCTLA-4 and manganese (Mn), an activator of cGAS, to tumors remains a major challenge for enhanced MRI and active immunotherapy. Herein, a theragnostic nanosphere Mn-CREKA-aCTLA-4-SS (MCCS) is prepared by covalently assembling Mn2+, silk sericin (SS), pentapeptide CREKA, and aCTLA-4. MCCS are stable with an average size of 160 nm and is almost negatively charged or neutral at pH 5.5/7.4. T1-weighted images showed MCCS actively targeted tumors to improve the relaxation rate r1 and contrast time of MRI. This studies demonstrated MCCS raises reactive oxygen species levels, activates the cGAS-STING pathway, stimulates effectors CD8+ and CD80+ T cells, reduces regulatory T cell numbers, and increases IFN-γ and granzyme secretion, thereby inducing tumor cells autophagy and apoptosis in vitro and in vivo. Also, MCCS are biocompatible and biosafe. These studies show the great potential of Mn-/SS-based integrative material MCCS for precision and personalized tumor nanotheragnostics.


Assuntos
Neoplasias , Sericinas , Humanos , Manganês , Imunoterapia , Imageamento por Ressonância Magnética , Nucleotidiltransferases , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
4.
Insect Mol Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961541

RESUMO

Animal silk is economically important, while silk secretion is a complex and subtle mechanism regulated by many genes. We identified the poly (ADP-ribose) polymerase (PARP1) gene of the silkworm and successfully cloned its coding sequence (CDS) sequence. Using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) technology, we screened single guide RNA (sgRNA) with high knockout efficiency by cellular experiments and obtained PARP1 mutants by knocking out the PARP1 gene of the silkworm at the individual level. We found that the mutants mainly exhibited phenotypes such as smaller cocoon size and reduced cocoon shell rate than the wild type. We also detected the expression of silk protein genes in the mutant by quantitative real-time PCR (qPCR) and found that the expression of some silk protein genes was slightly down-regulated. Meanwhile, together with the results of transcriptomic analysis, we hypothesized that PARP1 may affect the synthesis of silk proteins, resulting in their failure to function properly. Our study may provide an important reference for future in-depth refinement of the molecular mechanism of silk protein expression in silk-producing animals, as well as a potential idea for future development of molecular breeding lines of silkworms to improve silk production.

5.
Insect Mol Biol ; 33(1): 41-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740676

RESUMO

Caddisworms (Trichoptera) spin adhesive silks to construct a variety of underwater composite structures. Many studies have focused on the fibroin heavy chain of caddisworm silk and found that it contains heavy phosphorylation to maintain a stable secondary structure. Besides fibroins, recent studies have also identified some new silk proteins within caddisworm silk. To better understand the silk composition and its secretion process, this study reports the silk gland proteome of a retreat-building caddisworm, Stenopsyche angustata Martynov (Trichoptera, Stenopsychidae). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 2389 proteins were identified in the silk gland of S. angustata, among which 192 were predicted as secreted silk proteins. Twenty-nine proteins were found to be enriched in the front silk gland, whereas 109 proteins were enriched in the caudal silk gland. The fibroin heavy chain and nine uncharacterized silk proteins were identified as phosphorylated proteins. By analysing the sequence of the fibroin heavy chain, we found that it contains 13 Gly/Thr/Pro-rich regions, 12 Val/Ser/Arg-rich regions and a Gly/Arg/Thr-rich region. Three uncharacterized proteins were identified as sericin-like proteins due to their larger molecular weights, signal peptides and repetitive motifs rich in serine. This study provides valuable information for further clarifying the secretion and adhesion of underwater caddisworm silk.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Fibroínas/genética , Fibroínas/química , Insetos/metabolismo , Larva/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bombyx/metabolismo , Proteínas de Insetos/metabolismo
6.
Nucleic Acids Res ; 50(8): e47, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166837

RESUMO

Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/terapia , Humanos , Camundongos , Pandemias/prevenção & controle , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/genética , SARS-CoV-2/genética
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34429358

RESUMO

Insect development is cooperatively orchestrated by the steroid hormone ecdysone and juvenile hormone (JH). The polycomb repressive complex 2 (PRC2)-mediated histone H3K27 trimethylation (H3K27me3) epigenetically silences gene transcription and is essential for a range of biological processes, but the functions of H3K27 methylation in insect hormone action are poorly understood. Here, we demonstrate that H3K27 methylation-mediated repression of Hairy transcription in the larval prothoracic gland (PG) is required for ecdysone biosynthesis in Bombyx and Drosophila H3K27me3 levels in the PG are dynamically increased during the last larval instar. H3K27me3 reduction induced by the down-regulation of PRC2 activity via inhibitor treatment in Bombyx or PG-specific knockdown of the PRC2 component Su(z)12 in Drosophila diminishes ecdysone biosynthesis and disturbs the larval-pupal transition. Mechanistically, H3K27 methylation targets the JH signal transducer Hairy to repress its transcription in the PG; PG-specific knockdown or overexpression of the Hairy gene disrupts ecdysone biosynthesis and developmental transition; and developmental defects caused by PG-specific Su(z)12 knockdown can be partially rescued by Hairy down-regulation. The application of JH mimic to the PG decreases both H3K27me3 levels and Su(z)12 expression. Altogether, our study reveals that PRC2-mediated H3K27 methylation at Hairy in the PG during the larval period is required for ecdysone biosynthesis and the larval-pupal transition and provides insights into epigenetic regulation of the crosstalk between JH and ecdysone during insect development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bombyx/metabolismo , Proteínas de Drosophila/genética , Drosophila/metabolismo , Ecdisona/biossíntese , Histonas/metabolismo , Proteínas de Insetos/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Larva/metabolismo , Metilação , Pupa/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Esteroides/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542400

RESUMO

Bombyx mori was domesticated from Bombyx mandarina. The long-term domestication of the silkworm has brought about many remarkable changes to its body size and cocoon shell weight. However, the molecular mechanism underlying the improvement in the economic characteristics of this species during domestication remains unclear. In this study, we found that a transposable element (TE)-Bm1-was present in the upstream regulatory region of the Mlx (Max-like protein X) gene in wild silkworms but not in all domesticated silkworms. The absence of Bm1 caused an increase in the promoter activity and mRNA content of Mlx. Mlx and its partner Mondo belong to the bHLHZ transcription factors family and regulate nutrient metabolism. RNAi of Mlx and Mondo decreased the expression and promoter activity of glucose metabolism-related genes (trehalose transport (Tret), phosphofructokinase (PFK), and pyruvate kinase (PK)), lipogenic genes (Acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS)), and glutamine synthesis gene (Glutamine synthase 2, (GS2)). Furthermore, the transgenic overexpression of Mlx and Mondo in the fat body of silkworms increased the larval body size, cocoon shell weight, and egg number, but the silencing of the two genes resulted in the opposite phenotypes. Our results reveal the molecular mechanism of Mlx selection during domestication and its successful use in the molecular breeding of Bombyx mori.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Larva/genética , Domesticação , Glutamina/metabolismo , Tamanho Corporal
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473803

RESUMO

Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/ß conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.


Assuntos
Besouros , Fosfotransferases (Aceptor do Grupo Álcool) , Tribolium , Animais , Tribolium/genética , Besouros/metabolismo , Ácido Mevalônico/metabolismo , Hormônios Juvenis/metabolismo
10.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339188

RESUMO

The silkworm (Bombyx mori) has served humankind through silk protein production. However, traditional sericulture and the silk industry have encountered considerable bottlenecks and must rely on major technological breakthroughs to keep up with the current rapid developments. The adoption of gene editing technology has nevertheless brought new hope to traditional sericulture and the silk industry. The long period and low efficiency of traditional genetic breeding methods to obtain high silk-yielding silkworm strains have hindered the development of the sericulture industry; the use of gene editing technology to specifically control the expression of genes related to silk gland development or silk protein synthesis is beneficial for obtaining silkworm strains with excellent traits. In this study, BmEcKL1 was specifically knocked out in the middle (MSGs) and posterior (PSGs) silk glands using CRISPR/Cas9 technology, and ΔBmEcKL1-MSG and ΔBmEcKL1-PSG strains with improved MSGs and PSGs and increased silk production were obtained. This work identifies and proves that BmEcKL1 directly or indirectly participates in silk gland development and silk protein synthesis, providing new perspectives for investigating silk gland development and silk protein synthesis mechanisms in silkworms, which is of great significance for selecting and breeding high silk-yielding silkworm varieties.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Seda/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
11.
Genome Res ; 30(5): 757-767, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32424075

RESUMO

High-throughput genetic screens are powerful methods to interrogate gene function on a genome-wide scale and identify genes responsible to certain stresses. Here, we developed a piggyBac strategy to deliver pooled sgRNA libraries stably into cell lines. We used this strategy to conduct a screen based on genome-wide clustered regularly interspaced short palindromic repeat technology (CRISPR)-Cas9 in Bombyx mori cells. We first constructed a single guide RNA (sgRNA) library containing 94,000 sgRNAs, which targeted 16,571 protein-coding genes. We then generated knockout collections in BmE cells using the piggyBac transposon. We identified 1006 genes that are essential for cell viability under normal growth conditions. Of the identified genes, 82.4% (829 genes) were homologous to essential genes in seven animal species. We also identified 838 genes whose loss facilitated cell growth. Next, we performed context-specific positive screens for resistance to biotic or nonbiotic stresses using temperature and baculovirus separately, which identified several key genes and pathways from each screen. Collectively, our results provide a novel and versatile platform for functional annotations of B. mori genomes and deciphering key genes responsible for various conditions. This study also shows the effectiveness, practicality, and convenience of genome-wide CRISPR screens in nonmodel organisms.


Assuntos
Bombyx/genética , Sistemas CRISPR-Cas , Genes Essenciais , Genes de Insetos , Animais , Bombyx/virologia , Linhagem Celular , Sobrevivência Celular/genética , Genoma de Inseto , Interações Hospedeiro-Patógeno , RNA , Estresse Fisiológico/genética , Temperatura
12.
Development ; 147(8)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165490

RESUMO

Vitellogenin receptors (VgRs) play crucial roles in oogenesis by mediating endocytosis of vitellogenin and other nutrients in ovipara. We conducted small RNA sequencing and screening with a luciferase reporter system, and found that bmo-miR-2739 and a novel miRNA (novel-miR-167) coordinately regulate the expression of VgR in Bombyx mori (BmVgR). Further analyses suggested that these two miRNAs direct target repression by binding directly to the BmVgR 3' untranslated region. Forced expression of either miRNA using the piggyBac system blocked vitellogenin (Vg) transport and retarded ovariole development. Antagomir silencing of bmo-miR-2739 or novel-miR-167 resulted in increased amounts of BmVgR protein in the ovaries and BmVgR mRNA in the fat body. This evidence, combined with spatiotemporal expression profiles, revealed that these two miRNAs function together to fine-tune the amount of BmVgR protein for ovarian development. Additionally, novel-miR-167 was mainly responsible for the post-transcriptional repression of BmVgR in non-ovarian tissues. The results of this study contribute to our understanding of the function of miRNAs during ovarian development of a lepidopteran and suggest a new strategy for controlling insect reproduction.


Assuntos
Bombyx/genética , Proteínas do Ovo/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Oogênese/genética , Receptores de Superfície Celular/genética , Regiões 3' não Traduzidas/genética , Animais , Animais Geneticamente Modificados , Proteínas do Ovo/metabolismo , Genes Reporter , Luciferases/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Óvulo/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo
13.
Insect Mol Biol ; 32(3): 251-262, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36636859

RESUMO

Animal behaviour regulation is a complex process involving many factors, and the nervous system is an essential factor in this process. In many species, pathogens can alter host behaviour by affecting the host's nervous system. An interesting example is that the silkworm shows enhanced locomotor behaviour after being infected with the nucleopolyhedrosis virus. In this study, we analysed the transcriptome of the silkworm brain at different time points after infection and found that various genes related to behaviour regulation changed after infection. In-depth analysis showed that the tyrosine hydroxylase gene might be a key candidate gene, and the content of dopamine, its downstream metabolite, increased significantly in the brain of silkworms infected with the virus. After the injection of tyrosine hydroxylase inhibitor into the infected silkworm, the dopamine content in the silkworm brain decreased and the locomotor behaviour caused by the virus was blocked successfully. These results confirm that tyrosine hydroxylase is involved in regulating enhanced locomotor behaviour after virus infection in silkworms. Furthermore, the tyrosine hydroxylase gene was specifically overexpressed in the brain of the silkworm, and the transgenic silkworm was enhanced in locomotor behaviour and foraging behaviour. These results suggest that the tyrosine hydroxylase gene plays a vital role in regulating insect behaviour.


Assuntos
Bombyx , Depressores do Sistema Nervoso Central , Animais , Bombyx/genética , Bombyx/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Encéfalo/metabolismo , Animais Geneticamente Modificados
14.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833932

RESUMO

Energy metabolism is a fundamental process in all organisms. During silkworm (Bombyx mori) embryonic development, there is a high demand for energy due to continuous cell proliferation and differentiation. Estrogen-related receptors (ERRs) are transcriptional regulatory factors that play crucial roles in mammalian energy storage and expenditure. Although most insects have one ERR gene, it also participates in the regulation of energy metabolism, including carbohydrate metabolism in Drosophila, Aphid, and Silkworm. However, no study has reported the direct impact of energy metabolism on embryonic development in silkworms. In this study, we used transgenic technology to increase silkworm (B. mori; Bm) BmERR expression during embryonic development and explored the impact of energy on embryonic development. We found no significant change in the quality of silkworm eggs compared to that of wild-type silkworms. However, there was an increase in the consumption of vitellin, a major nutrient in embryos. This resulted in a decrease in glucose content and a significant increase in ATP content. These findings provide evidence that the acceleration of energy metabolism promotes embryonic development and enhances the motility of hatched silkworms. In addition, these results provide a novel perspective on the relationship between energy metabolism and embryonic development in other insects.


Assuntos
Bombyx , Receptores de Estrogênio , Animais , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Desenvolvimento Embrionário/genética , Fatores de Transcrição/metabolismo , Estrogênios/metabolismo , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373097

RESUMO

The high adaptability of insects to food sources has contributed to their ranking among the most abundant and diverse species on Earth. However, the molecular mechanisms underlying the rapid adaptation of insects to different foods remain unclear. We explored the changes in gene expression and metabolic composition of the Malpighian tubules as an important metabolic excretion and detoxification organ in silkworms (Bombyx mori) fed mulberry leaf and artificial diets. A total of 2436 differentially expressed genes (DEGs) and 245 differential metabolites were identified between groups, with the majority of DEGs associated with metabolic detoxification, transmembrane transport, and mitochondrial function. Detoxification enzymes, such as cytochrome P450 (CYP), glutathione-S-transferase (GST), and UDP-glycosyltransferase, and ABC and SLC transporters of endogenous and exogenous solutes were more abundant in the artificial diet group. Enzyme activity assays confirmed increased CYP and GST activity in the Malpighian tubules of the artificial diet-fed group. Metabolome analysis showed increased contents of secondary metabolites, terpenoids, flavonoids, alkaloids, organic acids, lipids, and food additives in the artificial diet group. Our findings highlight the important role of the Malpighian tubules in adaptation to different foods and provide guidance for further optimization of artificial diets to improve silkworm breeding.


Assuntos
Bombyx , Animais , Bombyx/genética , Túbulos de Malpighi/metabolismo , Melhoramento Vegetal , Insetos/metabolismo , Dieta , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834878

RESUMO

DNA N6-methyladenine (6mA) has recently been found to play regulatory roles in gene expression that links to various biological processes in eukaryotic species. The functional identification of 6mA methyltransferase will be important for understanding the underlying molecular mechanism of epigenetic 6mA methylation. It has been reported that the methyltransferase METTL4 can catalyze the methylation of 6mA; however, the function of METTL4 remains largely unknown. In this study, we aim to investigate the role of the Bombyx mori homolog METTL4 (BmMETTL4) in silkworm, a lepidopteran model insect. By using CRISPR-Cas9 system, we somatically mutated BmMETTL4 in silkworm individuates and found that disruption of BmMETTL4 caused the developmental defect of late silkworm embryo and subsequent lethality. We performed RNA-Seq and identified that there were 3192 differentially expressed genes in BmMETTL4 mutant including 1743 up-regulated and 1449 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that genes involved in molecular structure, chitin binding, and serine hydrolase activity were significantly affected by BmMETTL4 mutation. We further found that the expression of cuticular protein genes and collagens were clearly decreased while collagenases were highly increased, which had great contributions to the abnormal embryo and decreased hatchability of silkworm. Taken together, these results demonstrated a critical role of 6mA methyltransferase BmMETTL4 in regulating embryonic development of silkworm.


Assuntos
Bombyx , Metiltransferases , Animais , Metiltransferases/metabolismo , Bombyx/genética , Sistemas CRISPR-Cas , Mutação , Metilação , Proteínas de Insetos/genética
17.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298379

RESUMO

With the demand for more efficient and safer therapeutic drugs, targeted therapeutic peptides are well received due to their advantages of high targeting (specificity), low immunogenicity, and minimal side effects. However, the conventional methods of screening targeted therapeutic peptides in natural proteins are tedious, time-consuming, less efficient, and require too many validation experiments, which seriously restricts the innovation and clinical development of peptide drugs. In this study, we established a novel method of screening targeted therapeutic peptides in natural proteins. We also provide details for library construction, transcription assays, receptor selection, therapeutic peptide screening, and biological activity analysis of our proposed method. This method allows us to screen the therapeutic peptides TS263 and TS1000, which have the ability to specifically promote the synthesis of the extracellular matrix. We believe that this method provides a reference for screening other drugs in natural resources, including proteins, peptides, fats, nucleic acids, and small molecules.


Assuntos
Ácidos Nucleicos , Sericinas , Sericinas/farmacologia , Transcriptoma , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Imunoprecipitação
18.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047527

RESUMO

Metal ions are involved in the conformational transition of silk fibroin and influence the structure and mechanical properties of silk fibers. However, the dynamic characteristics of metal ions during the formation of silk fibers remain unclear. In this study, we found that the silk glands of silkworms contain various metal elements, with varying levels of the metal elements in different zones of the glands and higher levels in the anterior silk glands. Additionally, the content of various metallic elements in the silk glands varied greatly before and after spinning, similar to their content in different cocoon layers, thus, indicating that the anterior silk glands maintain a certain metal ion environment for the transport and conformational transformation of the silk proteins. Most of the metallic elements located in fibroin were confirmed using degumming experiments. For the first time, a scanning electron microscope energy spectrometry system was used to characterize the metal elements in the cross-section of silk and cocoons. These findings have deepened our understanding of the relationship between the overall metal ion environment and silk fiber formation and help us further conceptualize the utilization of metal ions as targets to improve the mechanical properties of the silk fibers.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Bombyx/metabolismo , Metais/metabolismo , Fibroínas/química , Íons/metabolismo
19.
J Biol Chem ; 297(5): 101234, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562453

RESUMO

Juvenile hormone (JH) acid methyltransferase (JHAMT) is a rate-limiting enzyme that converts JH acids or inactive precursors of JHs to active JHs at the final step of JH biosynthesis in insects and thus presents an excellent target for the development of insect growth regulators or insecticides. However, the three-dimensional properties and catalytic mechanism of this enzyme are not known. Herein, we report the crystal structure of the JHAMT apoenzyme, the three-dimensional holoprotein in binary complex with its cofactor S-adenosyl-l-homocysteine, and the ternary complex with S-adenosyl-l-homocysteine and its substrate methyl farnesoate. These structures reveal the ultrafine definition of the binding patterns for JHAMT with its substrate/cofactor. Comparative structural analyses led to novel findings concerning the structural specificity of the progressive conformational changes required for binding interactions that are induced in the presence of cofactor and substrate. Importantly, structural and biochemical analyses enabled identification of one strictly conserved catalytic Gln/His pair within JHAMTs required for catalysis and further provide a molecular basis for substrate recognition and the catalytic mechanism of JHAMTs. These findings lay the foundation for the mechanistic understanding of JH biosynthesis by JHAMTs and provide a rational framework for the discovery and development of specific JHAMT inhibitors as insect growth regulators or insecticides.


Assuntos
Bombyx/enzimologia , Proteínas de Insetos/química , Hormônios Juvenis/química , Metiltransferases/química , Animais , Bombyx/genética , Cristalografia por Raios X , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis/biossíntese , Hormônios Juvenis/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Domínios Proteicos
20.
Insect Mol Biol ; 31(2): 251-259, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34923696

RESUMO

Silkworm (Bombyx mori) is the only fully domesticated insect. As an economically important insect, nutrition utilization is important for its productivity. Hence, the present study investigated the expression pattern of BmAmy, an α-amylase, in B. mori. BmAmy protein purification and biochemical characterization were performed, and effects of BmAmy overexpression were assessed. Real-time quantitative reverse transcription polymerase chain reaction indicated that BmAmy transcription was positively correlated with the silkworm's food intate. Moreover, enzymatic activity assay results showed that BmAmy had significant α-amylase activity of about 1 mg/min/mg protein. Furthermore, treatment with mulberry amylase inhibitors MnAI1 and MnAI2 resulted to 89.92% and 93.67% inhibition in BmAmy activity, respectively, and the interaction between BmAmy and MnAI was also confirmed by protein docking analysis. A silkworm line that specifically overexpressed BmAmy in the midgut was generated through piggyBac-based transgenic technology, and compared to those of non-transgenic silkworms, the whole cocoon and cocoon shell weights of these transgenic silkworms increased by 10.13% and 18.32%, respectively, in the female group, and by 5.83% and 6.00%, respectively, in the male group. These results suggested that BmAmy may be a suitable target for breeding better silkworm varieties in the future.


Assuntos
Bombyx , Animais , Animais Geneticamente Modificados , Bombyx/genética , Bombyx/metabolismo , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , alfa-Amilases/genética , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA