Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Cancer ; 145(2): 586-596, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30628057

RESUMO

Mutations in RAS/RAF occur in large portion of malignancies and are associated with aggressive clinical behaviors and poor prognosis. Therefore, we developed a novel benzoxazole compound (KZ-001) as a highly potent and selective MEK 1/2 inhibitor. Our efforts were focused on enhancing the activity of the known MEK inhibitor AZD6244 and overcoming the shortcomings existing in current MEK inhibitors. Here we show that compound KZ-001 exhibits approximately 30-fold greater inhibition against BRAF- and KRAS-mutant tumor cells than that of AZD6244. These results were also demonstrated using in vivo xenograft models. Furthermore, pharmacokinetics (PK) analysis was performed for KZ-001, and this compound showed good orally bioavailability (28%) and exposure (AUC0-∞ = 337 ± 169 ng h/mL). To determine its potential clinical application, the synergistic effect of KZ-001 with other agents was investigated both in vitro and in vivo (xenograft models). KZ-001 exhibited synergistic anti-cancer effect in combination with BRAF inhibitor vemurafenib and a microtubule-stabilizing chemotherapeutic agent docetaxel. In addition, KZ-001 inhibited the MAPK pathway like known MEK inhibitors. In summary, KZ-001, a structurally novel benzoxazole compound, was developed as a MEK inhibitor that has potential for cancer treatment.


Assuntos
Benzoxazóis/administração & dosagem , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Benzoxazóis/química , Benzoxazóis/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/administração & dosagem , Docetaxel/farmacologia , Sinergismo Farmacológico , Feminino , Células HT29 , Humanos , Camundongos , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Vemurafenib/administração & dosagem , Vemurafenib/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Pharmacol ; 14: 1271268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808191

RESUMO

Background: Aberrant activation of RAS-RAF-MEK-ERK signaling pathway has been implicated in more than one-third of all malignancies. MEK inhibitors are promising therapeutic approaches to target this signaling pathway. Though four MEK inhibitors have been approved by FDA, these compounds possess either limited efficacy or unfavorable PK profiles with toxicity issues, hindering their broadly application in clinic. Our efforts were focused on the design and development of a novel MEK inhibitor, which subsequently led to the discovery of tunlametinib. Methods: This study verified the superiority of tunlametinib over the current MEK inhibitors in preclinical studies. The protein kinase selectivity activity of tunlametinib was evaluated against 77 kinases. Anti-proliferation activity was analyzed using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) or (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. ERK and phospho-ERK levels were evaluated by Western blot analysis. Flow cytometry analysis was employed to investigate cell cycle and arrest. Cell-derived xenograft (CDX) and Patient-derived xenograft (PDX) models were used to evaluate the tumor growth inhibition. The efficacy of tunlametinib as monotherapy treatment was evaluated in KRAS/BRAF mutant or wild type xenograft model. Furthermore, the combination studies of tunlametinib with BRAF/KRASG12C/SHP2 inhibitors or chemotherapeutic agent were conducted by using the cell proliferation assay in vitro and xenograft models in vivo. Results: In vitro, tunlametinib demonstrated high selectivity with approximately 19-fold greater potency against MEK kinase than MEK162, and nearly 10-100-fold greater potency against RAS/RAF mutant cell lines than AZD6244. In vivo, tunlametinib resulted in dramatic tumor suppression and profound inhibition of ERK phosphorylation in tumor tissue. Mechanistic study revealed that tunlametinib induced cell cycle arrest at G0/G1 phase and apoptosis of cells in a dose-proportional manner. In addition, tunlametinib demonstrated a favorable pharmacokinetic profile with dose-proportionality and good oral bioavailability, with minimal drug exposure accumulation. Furthermore, tunlametinib combined with BRAF/KRASG12C/SHP2 inhibitors or docetaxel showed synergistically enhanced response and marked tumor inhibition. Conclusion: Tunlametinib exhibited a promising approach for treating RAS/RAF mutant cancers alone or as combination therapies, supporting the evaluation in clinical trials. Currently, the first-in-human phase 1 study and pivotal clinical trial of tunlametinib as monotherapy have been completed and pivotal trials as combination therapy are ongoing.

3.
J Transl Med ; 9: 46, 2011 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-21513541

RESUMO

BACKGROUND: Polyethyleneimine (PEI), which can interact with negatively charged DNA through electrostatic interaction to form nanocomplexes, has been widely attempted to use as a gene delivery system. However, PEI has some defects that are not fit for keeping on gene expression. Therefore, some modifications against PEI properties have been done to improve their application value in gene delivery. In this study, three modified PEI derivatives, including poly(ε-caprolactone)-pluronic-poly(ε-caprolactone) grafted PEI (PCFC-g-PEI), folic acid-PCFC-isophorone diidocyanate-PEI (FA-PEAs) and heparin-PEI (HPEI), were evaluated in terms of their cytotoxicity and transfection efficiency in vitro and in vivo in order to ascertain their potential application in gene therapy. METHODS: MTT assay and a marker GFP gene, encoding green fluorescent protein, were used to evaluate cell toxicity and transfection activity of the three modified PEI in vitro. Renal cell carcinoma (RCC) models were established in BALB/c nude mice inoculated with OS-RC-2 cells to detect the gene therapy effects using the three PEI-derived nanoparticles as gene delivery vehicles. The expression status of a target gene Von Hippel-Lindau (VHL) in treated tumor tissues was analyzed by semiquantitative RT-PCR and immunohistochemistry. RESULTS: Each of three modified PEI-derived biomaterials had an increased transfection efficiency and a lower cytotoxicity compared with its precursor PEI with 25-kD or 2-kD molecule weight in vitro. And the mean tumor volume was obviously decreased 30% by using FA-PEAs to transfer VHL plasmids to treat mice RCC models. The VHL gene expression was greatly improved in the VHL-treated group. While there was no obvious tumor inhibition treated by PCFC-g-PEI:VHL and HPEI:VHL complexes. CONCLUSIONS: The three modified PEI-derived biomaterials, including PCFC-g-PEI, FA-PEAs and HPEI, had an increased transfection efficiency in vitro and obviously lower toxicities compared with their precursor PEI molecules. The FA-PEAs probably provide a potential gene delivery system to treat RCC even other cancers in future.


Assuntos
Carcinoma de Células Renais/terapia , Terapia Genética , Neoplasias Renais/terapia , Nanopartículas , Linhagem Celular Tumoral , Humanos
4.
Proteome Sci ; 8: 17, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20346134

RESUMO

BACKGROUND: Heat shock proteins (HSPs), including mainly HSP110, HSP90, HSP70, HSP60 and small HSP families, are evolutionary conserved proteins involved in various cellular processes. Abnormal expression of HSPs has been detected in several tumor types, which indicates that specific HSPs have different prognostic significance for different tumors. In the current studies, the expression profiling of HSPs in human low-grade glioma tissues (HGTs) were investigated using a sensitive, accurate SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative proteomic strategy. RESULTS: The five HSP family members were detected and quantified in both HGTs and autologous para-cancerous brain tissues (PBTs) by the SILAC-based mass spectrometry (MS) simultaneously. HSP90 AB1, HSP A5(70 KDa), and especially HSP27 were significantly downregulated in HGTs, whereas the expression level of HSPA9 (70 KDa) was little higher in HGTs than that in PBTs. It was noted that the downregulation ratio of HSP27 was 0.48-fold in HGTs versus PBTs, which was further validated by results from RT-PCR, western blotting and immunohistochemistry. Furthermore, we detected HSP27 expression changes along with cell growth under heat shock treatment in glioma H4 cells. CONCLUSION: The SILAC-MS technique is an applicable and efficient novel method, with a high-throughput manner, to quantitatively compare the relative expression level of HSPs in brain tumors. Different HSP family members have specific protein expression levels in human low-grade glioma discovered by SILAC-MS analysis. HSP27 expression was obviously downregulated in HGTs versus PBTs, and it exhibited temporal and spatial variation under heat shock treatment (43 degrees C/0-3 h) in vitro. HSP27's rapid upregulation was probably correlated with the temporary resistance to heat shock in order to maintain the survival of human glioma cells.

5.
PLoS One ; 12(1): e0170453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107520

RESUMO

Progesterone receptor membrane component 1 (PGRMC1) is widely observed with an elevated level in multiple human cancers. However, the roles of PGRMC1 in renal cancer are not clear and merit further study. In this report, we made a systematic, integrative biological assessment for PGRMC1 in renal cell carcinoma (RCC) by a quantitative proteomic identification, immunohistochemical detection, and its clinic pathologic significance analysis. We found that PGRMC1 abundance is increased by 3.91-fold in RCC tissues compared with its autologous para-cancerous tissues by a quantitative proteome identification. To validate the proteomic result with more confidence, 135 clinic RCC tissues were recruited to measure PGRMC1 abundance by immunohistochemical staining, and 63.7% RCC samples (n = 86) showed a higher abundance of PGRMC1 than the noncancerous counterparts. And the elevated PGRMC1 level was related to the tumor malignancy degree and overall survival of RCC patients. Meanwhile the average serum PGRMC1 concentration for RCC patients (n = 18) was significantly increased by 1.67 fold compared with healthy persons. Moreover an exogenous elevated abundance of PGRMC1 by plasmid transfections significantly enhanced cell proliferation of renal cancer cells in vitro. Our findings demonstrate PGRMC1, which promotes RCC progression phenotypes in vitro and in vivo, is a novel potential biomarker and therapeutic target for RCC.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteínas de Membrana/sangue , Proteômica , Receptores de Progesterona/sangue , Carcinoma de Células Renais/patologia , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA