Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Plant Physiol ; 194(2): 1024-1040, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37930282

RESUMO

In the acyl-CoA-independent pathway of triacylglycerol (TAG) synthesis unique to plants, fungi, and algae, TAG formation is catalyzed by the enzyme phospholipid:diacylglycerol acyltransferase (PDAT). The unique PDAT gene of the model diatom Phaeodactylum tricornutum strain CCMP2561 boasts 47 single nucleotide variants within protein coding regions of the alleles. To deepen our understanding of TAG synthesis, we observed the allele-specific expression of PDAT by the analysis of 87 published RNA-sequencing (RNA-seq) data and experimental validation. The transcription of one of the two PDAT alleles, Allele 2, could be specifically induced by decreasing nitrogen concentrations. Overexpression of Allele 2 in P. tricornutum substantially enhanced the accumulation of TAG by 44% to 74% under nutrient stress; however, overexpression of Allele 1 resulted in little increase of TAG accumulation. Interestingly, a more serious growth inhibition was observed in the PDAT Allele 1 overexpression strains compared with Allele 2 counterparts. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that enzymes encoded by PDAT Allele 2 but not Allele 1 had TAG biosynthetic activity, and 7 N-terminal and 3 C-terminal amino acid variants between the 2 allele-encoded proteins substantially affected enzymatic activity. P. tricornutum PDAT, localized in the innermost chloroplast membrane, used monogalactosyldiacylglycerol and phosphatidylcholine as acyl donors as demonstrated by the increase of the 2 lipids in PDAT knockout lines, which indicated a common origin in evolution with green algal PDATs. Our study reveals unequal roles among allele-encoded PDATs in mediating carbon storage and growth in response to nitrogen stress and suggests an unsuspected strategy toward lipid and biomass improvement for biotechnological purposes.


Assuntos
Diacilglicerol O-Aciltransferase , Diatomáceas , Diacilglicerol O-Aciltransferase/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Alelos , Especificidade por Substrato , Plantas/metabolismo , Fosfolipídeos , Nitrogênio , Triglicerídeos/metabolismo
2.
Hum Genet ; 143(3): 331-342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478153

RESUMO

Accurate discrimination of pathogenic and nonpathogenic variation remains an enormous challenge in clinical genetic testing of inherited retinal diseases (IRDs) patients. Computational methods for predicting variant pathogenicity are the main solutions for this dilemma. The majority of the state-of-the-art variant pathogenicity prediction tools disregard the differences in characteristics among different genes and treat all types of mutations equally. Since missense variants are the most common type of variation in the coding region of the human genome, we developed a novel missense mutation pathogenicity prediction tool, named Prediction of Deleterious Missense Mutation for IRDs (PdmIRD) in this study. PdmIRD was tailored for IRDs-related genes and constructed with the conditional random forest model. Population frequencies and a newly available prediction tool were incorporated into PdmIRD to improve the performance of the model. The evaluation of PdmIRD demonstrated its superior performance over nonspecific tools (areas under the curves, 0.984 and 0.910) and an existing eye abnormalities-specific tool (areas under the curves, 0.975 and 0.891). We also demonstrated the submodel that used a smaller gene panel further slightly improved performance. Our study provides evidence that a disease-specific model can enhance the prediction of missense mutation pathogenicity, especially when new and important features are considered. Additionally, this study provides guidance for exploring the characteristics and functions of the mutated proteins in a greater number of Mendelian disorders.


Assuntos
Mutação de Sentido Incorreto , Doenças Retinianas , Humanos , Biologia Computacional/métodos , Predisposição Genética para Doença , Testes Genéticos/métodos , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética
3.
Small ; 20(9): e2306695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857593

RESUMO

Reversible oxygen redox (OR) is considered as a paradigmatic avenue to boost the energy densities of layered oxide cathodes. However, its activation is largely coupled with the local coordination environment around oxygen, which is usually accompanied with irreversible oxygen release and unfavorable structure distortion. Herein, it is revealed that the synergistic effect of transition-metal (TM) vacancy and substitution element for modulating the OR activity and reversibility of layered Na0.67 MnO2 through multimodal operando synchrotron characterizations and electrochemical investigations. It is disclosed that TM vacancy can not only suppress the complicated phase transition but also stimulate the OR activity by creating nonbonding O 2p states via the Na─O─vacancy configurations. Notably, the substitution element plays a decisive role for regulating the reversibility of vacancy-boosted OR activity: the presence of strong Al─O bonds stabilizes the Mn-O motifs by sharing O with Al in the rigid Mn─O─Al frameworks, which mitigates TM migration and oxygen release induced by TM vacancy, leading to enhanced OR reversibility; while the introduction of weak Zn─O bonds exacerbates TM migration and irreversible oxygen release. This work clarifies the critical role of both TM vacancy and substitution element for regulating the OR chemistry, providing an effective avenue for designing high-performance cathodes employing anionic redox.

4.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458930

RESUMO

SUMMARY: With the continuous development of high-throughput sequencing technology, bioinformatic analysis of omics data plays an increasingly important role in life science research. Many R packages are widely used for omics analysis, such as DESeq2, clusterProfiler and STRINGdb. And some online tools based on them have been developed to free bench scientists from programming with these R packages. However, the charts generated by these tools are usually in a fixed, non-editable format and often fail to clearly demonstrate the details the researchers intend to express. To address these issues, we have created Visual Omics, an online tool for omics data analysis and scientific chart editing. Visual Omics integrates multiple omics analyses which include differential expression analysis, enrichment analysis, protein domain prediction and protein-protein interaction analysis with extensive graph presentations. It can also independently plot and customize basic charts that are involved in omics analysis, such as various PCA/PCoA plots, bar plots, box plots, heat maps, set intersection diagrams, bubble charts and volcano plots. A distinguishing feature of Visual Omics is that it allows users to perform one-stop omics data analyses without programming, iteratively explore the form and layout of graphs online and fine-tune parameters to generate charts that meet publication requirements. AVAILABILITY AND IMPLEMENTATION: Visual Omics can be used at http://bioinfo.ihb.ac.cn/visomics. Source code can be downloaded at http://bioinfo.ihb.ac.cn/software/visomics/visomics-1.1.tar.gz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Internet
5.
Nat Chem Biol ; 18(12): 1330-1340, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400990

RESUMO

Protein condensates are distinct structures assembled in living cells that concentrate molecules via phase separation in a confined subcellular compartment. In the past decade, remarkable advances have been made to discover the fundamental roles of the condensates in spatiotemporal control of cellular metabolism and physiology and to reveal the molecular principles, components and driving forces that underlie their formation. Here we review the unique properties of the condensates, the promise and hurdles for harnessing them toward purposeful design and manipulation of biological functions in living cells. In particular, we highlight recent advances in mining and understanding the proteinaceous components for creating designer condensates, along with the engineering approaches to manipulate their material properties and biological functions. With these advances, a greater variety of complex organelle-like structures can be built for diverse applications, with unprecedented effects on synthetic biology.


Assuntos
Engenharia Metabólica , Biologia Sintética , Proteínas/química , Organelas
6.
Cerebellum ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558026

RESUMO

Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38546457

RESUMO

A Gram-stain-negative, aerobic, motile with flagella and rod- or ovoid-shaped bacterium, designated GG15T, was isolated from tidal flat sediment sampled in Zhoushan, Zhejiang Province. Strain GG15T grew at 20-40 °C (optimum, 30 °C), at pH 5.5-9.5 (optimum, pH 7.0-8.0) and with 1.0-10.0 % (w/v) NaCl (optimum, 1.5 %). Colony diameters ranged from 1 to 3 mm within the first week, reaching a maximum of 6-7 mm after 15 days of cultivation. Strain GG15T exhibited highest 16S rRNA gene sequence similarity to Microbulbifer taiwanensis CCM 7856T (98.1 %), with similarity to other species within the genus Microbulbifer ranging from 97.8 to 93.8 %. Similarity values to other genera were below 93.8 %. Strain GG15T exhibited positive activity for ß-glucosidase, trypsin and chymotrypsin, whereas the reference strain showed negative activity. Chemotaxonomic analyses indicated that strain GG15T contained Q-8 as the sole respiratory quinone, C16 : 0 (9.1 %), iso-C15 : 0 (30.9 %) and iso-C11 : 0 3-OH (7.2 %) as the predominant fatty acids, and phosphatidylethanolamine, phosphatidylglycerol, three unidentified lipids, four unidentified glycolipids, one unidentified phospholipid, two unidentified aminolipids and two unidentified aminophospholipids as the main polar lipids. The genome of strain GG15T was 4 307 641 bp long, comprising 3861 protein-coding genes. The G+C content of strain GG15T was 61.5 mol% based on its genomic sequence. Strain GG15T showed low digital DNA-DNA hybridization (<70 %) and average nucleotide identity values (<95 %) with other Microbulbifer species. As a result, a novel species within the genus Microbulbifer, named Microbulbifer magnicolonia sp. nov., is proposed. The type strain is GG15T (MCCC 1K08802T=KCTC 8210T).


Assuntos
Alteromonadaceae , Ácidos Graxos , Composição de Bases , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , China
8.
J Org Chem ; 89(7): 5060-5068, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38525894

RESUMO

Radical cyclization has been demonstrated to be an efficient method to access functionalized heterocycles from easily accessible raw materials. Described herein is the development of a photocatalytic proton-coupled electron transfer (PCET) strategy for the synthesis of isoquinoline-1,3-diones using readily prepared naphthalimide (NI)-based organic photocatalysts. The process features free metal-complex photocatalysts, acids, and mild reaction conditions. This mild radical cyclization protocol has a broad substrate scope and can be effectively applied to a variety of medicinally relevant substrates. Furthermore, control experiments were conducted to elucidate the mechanism of this visible light-induced methodology.

9.
Acta Pharmacol Sin ; 45(7): 1349-1365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504011

RESUMO

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.


Assuntos
Infarto da Artéria Cerebral Média , Inflamassomos , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estimulação do Nervo Vago/métodos , AVC Isquêmico/metabolismo , Microglia/metabolismo , Camundongos , Inflamassomos/metabolismo , Masculino , Infarto da Artéria Cerebral Média/terapia , Neuroproteção , Camundongos Knockout
10.
Curr Microbiol ; 81(6): 138, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609554

RESUMO

A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).


Assuntos
Marinobacter , Marinobacter/genética , RNA Ribossômico 16S/genética , Areia , Amônia , China
11.
Nucleic Acids Res ; 50(14): 7816-7828, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766415

RESUMO

G-quadruplex (G4) transitions play integral roles in regulating biological functions and can be modified by ligands. However, little is known about G4 transitions. Herein, we reveal distinct pathways of a platinum(II) compound Pt-phen converting parallel-stranded MYC G4 to a hybrid-type structure. Three NMR structures, 1:1 5'-end binding, 1:1 3'-end binding and 2:1 Pt-phen-MYC G4 complexes, were determined by NMR. We find that Pt-phen drives G4 transition at a low ratio. Under physiological 100 mM K+ conditions, a significant stable hydrogen-bonded T:T:A triad is formed at 3'-end of hybrid-type Myc1234, and consequently, Pt-phen first binds the 5'-end to form a 1:1 5'-end binding complex and then disrupts the 3' T:T:A triad and binds 3'-end to form a 2:1 complex with more Pt-phen. Remarkably, the G4 transition pathway is different in 5 mM K+ with Pt-phen first binding the 3'-end and then the 5'-end. 'Edgewise-loop and flanking/ligand/G-tetrad' sandwich structure formation and terminal T:T:A triad stabilization play decisive roles in advancing and altering transition pathways. Our work is the first to elucidate the molecular structures of G4 transitions driven by a small molecule. The ligand-driven G4 transition is a dynamic process that includes a quick G4 transition and multiple complexes formation.


Assuntos
Quadruplex G , Compostos de Platina , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular
12.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33941644

RESUMO

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest to know whether the midlatitude region has been an evolutionary cradle or museum for conifers and how evolutionary and ecological factors have driven their spatiotemporal evolution. Here, we investigated the macroevolution of Pinus, the largest conifer genus and characteristic of northern temperate coniferous forests, based on nearly complete species sampling. Using 1,662 genes from transcriptome sequences, we reconstructed a robust species phylogeny and reestimated divergence times of global pines. We found that ∼90% of extant pine species originated in the Miocene in sharp contrast to the ancient origin of Pinus, indicating a Neogene rediversification. Surprisingly, species at middle latitudes are much older than those at other latitudes. This finding, coupled with net diversification rate analysis, indicates that the midlatitude region has provided an evolutionary museum for global pines. Analyses of 31 environmental variables, together with a comparison of evolutionary rates of niche and phenotypic traits with a net diversification rate, found that topography played a primary role in pine diversification, and the aridity index was decisive for the niche rate shift. Moreover, fire has forced diversification and adaptive evolution of Pinus Our study highlights the importance of integrating phylogenomic and ecological approaches to address evolution of biological groups at the global scale.


Assuntos
Ecologia/métodos , Ecossistema , Evolução Molecular , Filogenia , Pinus/genética , Análise Espaço-Temporal , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Especiação Genética , Variação Genética , Geografia , Fenótipo , Pinus/anatomia & histologia , Pinus/classificação , Especificidade da Espécie , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431687

RESUMO

Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.


Assuntos
Colite/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Mucina-2/genética , Animais , Colite/patologia , Colite/prevenção & controle , Colite/terapia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Potenciais da Membrana/genética , Camundongos , Técnicas de Patch-Clamp
14.
Genomics ; 115(5): 110706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714387

RESUMO

The grass carp (Ctenopharyngodon idella) is the world's most prolific freshwater fish. Little is known, however, about the functional genes and genetic regulatory networks that govern its growth traits. We created three grass carp families in this study by using two grass carp parents with fast-growing offspring and two grass carp parents with slow-growing offspring, namely the fast-growing × fast-growing family (FF), the slow-growing × slow-growing family (SS), and the fast-growing × slow-growing family (FS). Under the satiation and starvation feeding modes, the average body weight of these families' offspring exhibited a consistent ordering (FF > FS > SS). The transcriptomes of grass carp whole brain and hepatopancreas were then acquired for each family, and it was discovered that the number of differentially expressed genes (DEGs) in the different organs demonstrated family specificity. DEGs were mostly identified in the hepatopancreas of FF and the whole brain of SS, but they were more evenly distributed in FS. There were 14 DEGs that were found in all three families, including three that were negatively correlated in hepatopancreas (ahsg2, lect2) or in brain (drd5), and 11 that were positively connected in hepatopancreas (sycn, pabpc4, zgc:112294, cel, endou, ela2, prss3, zbtb41, ela3) or in brain (fabp7, endod1). The deletion of ahsg2 boosted the growth rate only in certain zebrafish, suggesting that the growth-promoting effects of ahsg2 varies among individuals. Furthermore, we examined the SNP in each family and conducted preliminary research on the probable genetic pathways of family-specific control of growth traits. The family specificity of the growth regulation mechanism of grass carp at the transcriptional level was revealed for the first time in this study, and it was discovered that growth differences among individuals in the FF family were primarily due to differences in nutrient metabolism, whereas growth differences among individuals in the SS family may be primarily due to differences in foraging ability caused by differences in brain development. This research adds to our understanding of the genetic regulatory mechanism of grass carp growth.


Assuntos
Carpas , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Carpas/genética , Perfilação da Expressão Gênica , Transcriptoma , Fenótipo
15.
Chin Med Sci J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594814

RESUMO

Objective To assess the diagnostic accuracy of bowel sound analysis for irritable bowel syndrome (IBS) with a systematic review and meta-analysis. Methods We searched MEDLINE, EMBASE, the Cochrane Library, Web of Science, and IEEE Xplore databases until September 2023. Cross-sectional and case-control studies on diagnostic accuracy of bowel sound analysis for IBS were identified. We estimated the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio with a 95% confidence interval (CI), and plotted a summary receiver operating characteristic curve and evaluated the area under the curve. Results Four studies were included. The pooled diagnostic sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.94 (95% CI, 0.87-0.97), 0.89 (95% CI, 0.81-0.94), 8.43 (95% CI, 4.81-14.78), 0.07 (95% CI, 0.03-0.15), and 118.86 (95% CI, 44.18-319.75), respectively, with an area under the curve of 0.97 (95% CI, 0.95-0.98). Conclusions Computerized bowel sound analysis is a promising tool for IBS. However, limited high-quality data make the results' validity and applicability questionable. There is a need for more diagnostic test accuracy studies and better wearable devices for monitoring and analysis.

16.
J Tissue Viability ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38886143

RESUMO

BACKGROUND: The association between underweight and pressure injuries (PIs) has been established in several studies. However, there is a lack of well-designed research investigating the connection between overweight and obesity with these injuries. OBJECTIVE: This meta-analysis aims to investigate the dose-response relationship between body mass index (BMI) and the risk of PIs in adult hospitalized patients. METHODS: PubMed, Web of Science, and MEDLINE Databases were searched from inception to May 2024. Observational articles with at least three BMI categories were included in the study. BMI was defined as underweight, normal weight, overweight, and morbid obesity for the meta-analysis. The non-linear relationship between BMI and the risk of PIs in hospitalized adults was investigated using restricted cubic spline models. Fractional polynomial modeling was used. RESULTS: Eleven articles reporting at least 3 categories of BMI met the inclusion criteria, including 31,389 participants. Compared to patients with normal weight, those with underweight, obesity, and morbid obesity exhibited an increased risk of PIs, with odds ratios of 1.70 (95%CI:1.50-1.91), 1.12 (95%CI:1.02-1.24), 1.70 (95%CI:1.13-2.55), respectively. A J-shaped dose-response model was established for the relationship between PI risk and BMI (Pnon-linearity < 0.001, Plinearity = 0.745). CONCLUSION: The J-shaped dose-response pattern revealed that underweight, obesity and morbid obesity heightened the risk of PIs in hospitalized adults. Lower and higher BMI values may signify an increased risk for PIs, particularly among the elderly with lower BMI, providing valuable guidance for medical staff.

17.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718707

RESUMO

Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.


Assuntos
Rhododendron , Ásia , Evolução Biológica , Filogenia , Plantas , Rhododendron/genética
18.
RNA ; 27(1): 80-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055239

RESUMO

High-throughput RNA sequencing unveiled the complexity of transcriptome and significantly increased the records of long noncoding RNAs (lncRNAs), which were reported to participate in a variety of biological processes. Identification of lncRNAs is a key step in lncRNA analysis, and a bunch of bioinformatics tools have been developed for this purpose in recent years. While these tools allow us to identify lncRNA more efficiently and accurately, they may produce inconsistent results, making selection a confusing issue. We compared the performance of 41 analysis models based on 14 software packages and different data sets, including high-quality data and low-quality data from 33 species. In addition, computational efficiency, robustness, and joint prediction of the models were explored. As a practical guidance, key points for lncRNA identification under different situations were summarized. In this investigation, no one of these models could be superior to others under all test conditions. The performance of a model relied to a great extent on the source of transcripts and the quality of assemblies. As general references, FEELnc_all_cl, CPC, and CPAT_mouse work well in most species while COME, CNCI, and lncScore are good choices for model organisms. Since these tools are sensitive to different factors such as the species involved and the quality of assembly, researchers must carefully select the appropriate tool based on the actual data. Alternatively, our test suggests that joint prediction could behave better than any single model if proper models were chosen. All scripts/data used in this research can be accessed at http://bioinfo.ihb.ac.cn/elit.


Assuntos
Biologia Computacional/métodos , Genoma , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Software , Animais , Benchmarking , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Genéticos , Anotação de Sequência Molecular , Plantas/genética , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transcriptoma
19.
Biomacromolecules ; 24(4): 1774-1783, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36952229

RESUMO

3,4-Dihydroxyphenylalanine (DOPA), a naturally occurring yet noncanonical amino acid, endows protein polymers with diverse chemical reactivities and novel functionalities. Although many efforts have been made to incorporate DOPA into proteins, the incorporation efficiency and production titer remain low and severely hinder the exploration of these peculiar proteins for biomaterial fabrication. Here, we report an efficient biosynthetic strategy to produce large amounts of DOPA-incorporated structural proteins for the fabrication of hydrogels with tunable mechanical properties. First, synthetic genes were constructed that encode repetitive resilin-like proteins (RLPs) with varying proportions of tyrosine residues and molecular weights (Mw). Decoding of these genes into RLPs incorporated with DOPA was achieved via mis-aminoacylation of DOPA by endogenous tyrosyl-tRNA synthetase (TyrRS) in recombinant Escherichia coli cells. By developing a stoichiometry-guided two-phase culture strategy, we achieved independent control of the bacterial growth and protein synthesis phases. This enabled hyperproduction of the DOPA-incorporated RLPs at gram-per-liter levels and with a high DOPA incorporation yield of 76-85%. The purified DOPA-containing RLPs were then successfully cross-linked into bulk hydrogels via facile DOPA-Fe3+ complexations. Interestingly, these hydrogels exhibited viscoelastic and self-healing properties that are highly dependent on the catechol content and Mw of the RLPs. Finally, exploration of the molecular cross-linking mechanisms revealed that higher DOPA contents of the proteins would result in the concomitant occurrence of metal coordination and oxidative covalent cross-linking. In summary, our results suggest a useful platform to generate DOPA-functionalized protein materials and provide deeper insights into the gelation systems based on DOPA chemistry.


Assuntos
Di-Hidroxifenilalanina , Hidrogéis , Di-Hidroxifenilalanina/química , Hidrogéis/química , Proteínas de Insetos/química , Polímeros
20.
Org Biomol Chem ; 21(47): 9428-9432, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990946

RESUMO

Divergent aromatic ring nitrosation and nitration of aromatic amides are reported using NOBF4 as the electrophile under silver-catalyzed conditions. The reactions proceed efficiently with a wide range of compatible functionalities providing ortho-position nitrosation products, deacylation nitrosation products, and nitration products from different tertiary and secondary aromatic amides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA