Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936491

RESUMO

V-Ti magnetite tailings (VTMTs) contain various heavy metals, such as Fe, Mn, V, Co, and Ni. The groundwater pollution caused by the tailing metal release has become a local environmental concern. Although studies have demonstrated the influence of alternate flooding and drying cycles (FDCs) on metal form and mobility in minerals, little was known about whether FDCs affect the metal release of VTMTs and the transformation of released metals. This study investigated the metal release kinetics of VTMTs and the metal transformation under FDCs in the absence and presence of acid rain (sulfuric and nitric acids) and bio-secreted organic acids (acetic, oxalic, and citric acids). The results showed that FDCs promoted metal release whether or not acids were present. The maximum released concentrations of V, Mn, Fe, Co, and Ni were as high as 78.63 mg L-1,1.47 mg L-1, 67.96 µg L-1, 1.34 mg L-1, and 0.80 mg L-1, respectively, under FDCs and citric acids. FDCs enhanced the tailing metal release by increasing the metal labile fraction proportion. However, the concentrations of released Fe, Mn, V, Co, and Ni all gradually decreased due to their (co-)precipitation. These precipitates conversely inhibited the subsequent mineral dissolution by covering the tailing surface. FDCs also enhanced the tailings' porosities by 2.94%-9.94%. The mineral dissolution, expansion and shrinkage, and changes in tension destroyed the tailing microstructure during FDCs. This study demonstrated the low metal pollution risk of VTMTs under FDCs, either in acid rain or bio-secreted organic acids. However, the increase in tailing porosity should be seriously considered as it would affect the tailing pond safety.


Assuntos
Metais Pesados , Metais Pesados/análise , Óxido Ferroso-Férrico/química , Poluentes Químicos da Água/análise , Inundações , Água Subterrânea/química , Mineração , Dessecação , Chuva Ácida , Cinética
2.
Sci Total Environ ; 852: 158394, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058324

RESUMO

Extracellular polymeric substances (EPS) are high-molecular polymers secreted by microbes and play essential roles in metallic biogeochemical cycling. Previous studies demonstrated the reducing capacity of the functional groups on EPS for metal reduction. However, the roles of different EPS components in vanadium speciation and their responsible reducing substances for vanadium reduction are still unknown. In this study, the EPS of Bacillus sp. PFYN01 was fractionated via ultrafiltration into six components with different kDa (EPS>100, EPS100-50, EPS50-30, EPS30-10, EPS10-3, and EPS<3). Batch reduction experiments of the intact cells, EPS-free cells, the pristine and fractionated EPS with V5+ were conducted and characterized. The results demonstrated that the extracellular reduction of V5+ into V4+ by EPS was the major reduction process. Among the functional groups in EPS, C=O/C-N of amide in protein/polypeptide and CO of carboxyl in fulvic acid-like substances might act as the reductants for V5+, while CO in polysaccharide molecules and PO in phosphodiester played a key role in the adsorption process. The intracellular reduction was via translocating V5+ into the cells and releasing V4+ by the intracellular reductases. The reducing capacity of the fractionated EPS followed a sequence of EPS<3 > EPS10-3 > EPS50-30 > EPS100-50 > EPS30-10 > EPS>100. The small molecules of fulvic acid-like substances and amino acids were responsible for the high reducing capacity of EPS<3. EPS>100 had the lowest reducing capacity due to its macromolecular structure decreasing the exposure of the reactive sites. In addition to reduction, those intermediate EPS components may also have supporting functions, such as connecting protein skeletons and increasing the specific surface area of EPS. Therefore, the diverse effects of the EPS components cannot be neglected in vanadium biogeochemical cycling.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Vanádio , Matriz Extracelular de Substâncias Poliméricas/química , Vanádio/análise , Peso Molecular , Substâncias Redutoras/análise , Polímeros/química , Bactérias , Oxirredutases/análise , Aminoácidos/análise , Amidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA