Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2307989120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603765

RESUMO

As a promising environmental remediation technology, the electro-Fenton (EF) process is mainly limited by the two rate-limiting steps, which are H2O2 generation and activation. The electrocatalytic three-electron oxygen reduction reaction (3e- ORR) can directly activate oxygen to hydroxyl radicals (•OH), which is expected to break through the rate-limiting steps of the EF process. However, limited success has been achieved in the design of 3e- ORR electrocatalysts. Herein, we propose Cu/CoSe2/C with the strong metal-support interactions to enhance the 3e- ORR process, exhibiting remarkable reactivity and stability for •OH generation. Both experiment and DFT calculation results reveal that CoSe2 is conducive to the generation of H2O2. Meanwhile, the metallic Cu can enhance the adsorption strength of *H2O2 intermediates and thus promotes the one-electron reduction to •OH. The Cu/CoSe2/C catalyst exhibits the electron-transfer number close to 3.0 during the ORR process, and exhibits the outstanding •OH generation performance, achieving a higher apparent rate constant (6.0 times faster) toward ciprofloxacin compared with its analogy without the SMSI effect. Our work represents that the SMSI effect endows Cu/CoSe2/C high activity and selectivity for •OH generation, providing a unique perspective for the design of a high-efficiency 3e- ORR catalyst.

2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810250

RESUMO

Arising from reduced dielectric screening, excitonic effects should be taken into account in ultrathin two-dimensional photocatalysts, and a significant challenge is achieving nontrivial excitonic regulation. However, the effect of structural modification on the regulation of the excitonic aspect is at a comparatively early stage. Herein, we report unusual effects of surface substitutional doping with Pt on electronic and surface characteristics of atomically thin layers of Bi3O4Br, thereby enhancing the propensity to generate 1O2 Electronically, the introduced Pt impurity states with a lower energy level can trap photoinduced singlet excitons, thus reducing the singlet-triplet energy gap by ∼48% and effectively facilitating the intersystem crossing process for efficient triplet excitons yield. Superficially, the chemisorption state of O2 causes the changes in the magnetic moment (i.e., spin state) of O2 through electron-mediated triplet energy transfer, resulting a spontaneous spin-flip process and highly specific 1O2 generation. These traits exemplify the opportunities that the surface engineering provides a unique strategy for excitonic regulation and will stimulate more research on exciton-triggering photocatalysis for solar energy conversion.

3.
Angew Chem Int Ed Engl ; 63(23): e202319470, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566301

RESUMO

Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal-support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.

4.
Angew Chem Int Ed Engl ; 62(29): e202301762, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37208825

RESUMO

Supramolecular interactions facilitate the development of tough multifunctional thermoplastic elastomers. However, the fundamental principles that govern supramolecular toughening are barely understood, and the rational design to achieve the desired high toughness remains daunting. Herein, we report a simple and robust method for toughening thermoplastic elastomers by rationally tailoring hard-soft phase separation structures containing rigid and flexible supramolecular segments. The introduced functional segments with distinct structural rigidities provide mismatched supramolecular interactions to efficiently tune the energy dissipation and bear an external load. The optimal supramolecular elastomer containing aromatic amide and acylsemicarbazide moieties demonstrates a record toughness (1.2 GJ m-3 ), extraordinary crack tolerance (fracture energy 282.5 kJ m-2 ), an ultrahigh true stress at break (2.3 GPa), good elasticity, healing ability, recyclability, and impact resistance. The toughening mechanism is validated by testing various elastomers, confirming the potential for designing and developing super-tough supramolecular materials with promising applications in aerospace and electronics.

5.
Mol Ther ; 29(1): 103-120, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33038325

RESUMO

Tissue stem cell senescence leads to stem cell exhaustion, which results in tissue homeostasis imbalance and a decline in regeneration capacity. However, whether neural stem cell (NSC) senescence occurs and causes neurogenesis reduction during aging is unknown. In this study, mice at different ages were used to detect age-related hippocampal NSC (H-NSC) senescence, as well as the function and mechanism of embryonic stem cell-derived small extracellular vesicles (ESC-sEVs) in rejuvenating H-NSC senescence. We found a progressive cognitive impairment, as well as age-related H-NSC senescence, in mice. ESC-sEV treatment significantly alleviated H-NSC senescence, recovered compromised self-renewal and neurogenesis capacities, and reversed cognitive impairment. Transcriptome analysis revealed that myelin transcription factor 1 (MYT1) is downregulated in senescent H-NSCs but upregulated by ESC-sEV treatment. In addition, knockdown of MYT1 in young H-NSCs accelerated age-related phenotypes and impaired proliferation and differentiation capacities. Mechanistically, ESC-sEVs rejuvenated senescent H-NSCs partly by transferring SMAD family members 4 (SMAD4) and 5 (SMAD5) to activate MYT1, which downregulated egl-9 family hypoxia inducible factor 3 (Egln3), followed by activation of hypoxia inducible factor 2 subunit α (HIF-2α), nicotinamide phosphoribosyl transferase (NAMPT), and sirtuin 1 (Sirt1) successively. Taken together, our results indicated that H-NSC senescence caused cellular exhaustion, neurogenesis reduction, and cognitive impairment during aging, which can be reversed by ESC-sEVs. Thus, ESC-sEVs may be promising therapeutic candidates for age-related diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Células-Tronco Neurais/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Senescência Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 116(18): 9115-9124, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30996120

RESUMO

Emerging evidence suggests that tissue plasminogen activator (tPA), currently the only FDA-approved medication for ischemic stroke, exerts important biological actions on the CNS besides its well-known thrombolytic effect. In this study, we investigated the role of tPA on primary neurons in culture and on brain recovery and plasticity after ischemic stroke in mice. Treatment with recombinant tPA stimulated axonal growth in culture, an effect independent of its protease activity and achieved through epidermal growth factor receptor (EGFR) signaling. After permanent focal cerebral ischemia, tPA knockout mice developed more severe sensorimotor and cognitive deficits and greater axonal and myelin injury than wild-type mice, suggesting that endogenously expressed tPA promotes long-term neurological recovery after stroke. In tPA knockout mice, intranasal administration of recombinant tPA protein 6 hours poststroke and 7 more times at 2 d intervals mitigated white matter injury, improved axonal conduction, and enhanced neurological recovery. Consistent with the proaxonal growth effects observed in vitro, exogenous tPA delivery increased poststroke axonal sprouting of corticobulbar and corticospinal tracts, which might have contributed to restoration of neurological functions. Notably, recombinant mutant tPA-S478A lacking protease activity (but retaining the EGF-like domain) was as effective as wild-type tPA in rescuing neurological functions in tPA knockout stroke mice. These findings demonstrate that tPA improves long-term functional outcomes in a clinically relevant stroke model, likely by promoting brain plasticity through EGFR signaling. Therefore, treatment with the protease-dead recombinant tPA-S478A holds particular promise as a neurorestorative therapy, as the risk for triggering intracranial hemorrhage is eliminated and tPA-S478A can be delivered intranasally hours after stroke.


Assuntos
Plasticidade Neuronal/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Recuperação de Função Fisiológica
7.
Environ Sci Technol ; 55(19): 13326-13334, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524793

RESUMO

The sluggish regeneration rate of FeII and low operating pH still restrict the wider application of classical Fenton process (FeII/H2O2) for practical water treatment. To overcome these challenges, we exploit the Mn-CNH co-catalyst to construct a solid-liquid interfacial Fenton reaction and accelerate the FeIII/FeII redox cycle at the interface for sustainably generating •OH from H2O2 activation. The Mn-CNH co-catalyst exhibits an excellent regeneration rate of FeII (∼65%) and a high tetracycline removal rate (Kobs) of 0.0541 min-1, which is 19.0 times higher than that of the FeII/H2O2 system (0.0027 min-1) at a near-neutral pH (pH ≈ 5.8), and it also attains 100% degradation of sulfamethoxazole, rhodamine B, and methyl orange. The cyclic mechanism of FeIII/FeII is further elucidated in an atomic scale by combining characterizations and density functional theory calculations, including FeaqIII specific adsorption and the electron-transfer process. Mn active sites can accumulate electrons from the matrix and adsorb FeaqIII to form Mn-Fe bonds at the solid-liquid interface, which accelerate electron transfer from Mn-CNH to FeaqIII and promote the regeneration of FeII at a wide pH range with a lower energy barrier. The regeneration rate of FeII in the Mn-CNH/FeII/H2O2 system outperforms the benchmark Fenton system and other typical metal nanomaterials, which has great potential to be widely applied in actual environment remediation.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Catálise , Concentração de Íons de Hidrogênio , Oxirredução
8.
Proc Natl Acad Sci U S A ; 115(39): E9230-E9238, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201709

RESUMO

Recombinant tissue plasminogen activator (tPA) is a Food and Drug Administration-approved thrombolytic treatment for ischemic stroke. tPA is also naturally expressed in glial and neuronal cells of the brain, where it promotes axon outgrowth and synaptic plasticity. However, there are conflicting reports of harmful versus neuroprotective effects of tPA in acute brain injury models. Furthermore, its impact on white matter integrity in preclinical traumatic brain injury (TBI) has not been thoroughly explored, although white matter disruption is a better predictor of long-term clinical outcomes than focal lesion volumes. Here we show that the absence of endogenous tPA in knockout mice impedes long-term recovery of white matter and neurological function after TBI. tPA-knockout mice exhibited greater asymmetries in forepaw use, poorer sensorimotor balance and coordination, and inferior spatial learning and memory up to 35 d after TBI. White matter damage was also more prominent in tPA knockouts, as shown by diffusion tensor imaging, histological criteria, and electrophysiological assessments of axon conduction properties. Replenishment of tPA through intranasal application of the recombinant protein in tPA-knockout mice enhanced neurological function, the structural and functional integrity of white matter, and postinjury compensatory sprouting in corticofugal projections. tPA also promoted neurite outgrowth in vitro, partly through the epidermal growth factor receptor. Both endogenous and exogenous tPA protected against white matter injury after TBI without increasing intracerebral hemorrhage volumes. These results unveil a previously unappreciated role for tPA in the protection and/or repair of white matter and long-term functional recovery after TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Ativador de Plasminogênio Tecidual/uso terapêutico , Substância Branca/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Proteínas Recombinantes , Substância Branca/patologia
9.
J Cell Mol Med ; 24(1): 640-654, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31667951

RESUMO

Endogenous neurogenesis holds promise for brain repair and long-term functional recovery after ischaemic stroke. However, the effects of exosomes from human urine-derived stem cells (USC-Exos) in neurogenesis remain unclear. This study aimed to investigate whether USC-Exos enhanced neurogenesis and promoted functional recovery in brain ischaemia. By using an experimental stroke rat model, we found that intravenous injection of USC-Exos enhanced neurogenesis and alleviated neurological deficits in post-ischaemic stroke rats. We used neural stem cells (NSCs) subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) as an in vitro model of ischaemic stroke. The in vitro results suggested that USC-Exos promoted both proliferation and neuronal differentiation of NSCs after OGD/R. Notably, a further mechanism study revealed that the pro-neurogenesis effects of USC-Exos may be partially attributed to histone deacetylase 6 (HDAC6) inhibition via the transfer of exosomal microRNA-26a (miR-26a). Taken together, this study indicates that USC-Exos can be used as a novel promising strategy for brain ischaemia, which highlights the application of USC-Exos.


Assuntos
Isquemia Encefálica/terapia , Exossomos/transplante , Desacetilase 6 de Histona/metabolismo , MicroRNAs/genética , Células-Tronco Neurais/citologia , Neurogênese , Acidente Vascular Cerebral/terapia , Urina/citologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Exossomos/metabolismo , Desacetilase 6 de Histona/genética , Humanos , Masculino , Células-Tronco Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
10.
Small ; 16(50): e2005704, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230921

RESUMO

The current investigation in magnetism in 2D materials offers new opportunities for studying spintronics at low dimensions. Here, reversible photoinduced room temperature magnetization in 2D Bi2 WO6 nanosheets is reported for the first time. Compared with the original state, the ultraviolet (UV)-illuminated Bi2 WO6 nanosheets show a yellow-green color change and significantly enhanced magnetic signals (saturated magnetization (Ms ) increased from 0.002 to 0.12 emu g-1 ). X-ray photoelectron spectroscopy (XPS) results show unexpected W reduction (W6+ to W5+ /W4+) and Bi oxidation (Bi3+ to Bi5+ ) upon UV illumination for the Bi2 WO6 nanosheets, indicating a photoexcited Bi to W charge transfer. Density functional theory (DFT) calculations indicate spontaneous spin polarization of the Bi2 WO6 nanosheets in the excited metastable state. Meanwhile, thicker Bi2 WO6 nanoplates or nanoparticles show no enhanced magnetic signals upon UV illumination. UV illumination of the thin Bi2 WO6 nanosheets can induce the formation of internal electric field (polarization), leading to structural deformation/lattice distortion (photostriction). The photoexcited electrons are trapped in the WO6 layers while the photogenerated holes are trapped in the Bi2 O2 layers, leading to spin polarization and enhance the magnetization. The research may bring some new insights in tuning the magnetic properties of 2D nanostructures.

11.
J Neurosci ; 38(47): 10168-10179, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30291203

RESUMO

Regulatory T cells (Tregs) are known to protect against ischemic stroke. However, the low frequency of Tregs restricts their clinical utility. This study investigated whether expanding the number of Tregs in vivo with the IL-2/IL-2 antibody complex (IL-2/IL-2Ab) could improve stroke outcomes and further elaborated the mechanisms of protection in male mice. C57BL/6 mice received IL-2/IL-2Ab or isotype IgG (IsoAb) intraperitoneally for 3 d before (pretreatment) or starting 2 h after (posttreatment) 60 min middle cerebral artery occlusion (MCAO). IL-2/IL-2Ab selectively increased the number of Tregs in the blood, spleen, and lymph nodes. The IL-2/IL-2Ab treatment significantly reduced infarct volume, inhibited neuroinflammation, and improved sensorimotor functions, as manifested by rotarod test and foot fault test, compared with IsoAb-treated stroke mice. Treg depletion was then achieved by diphtheria toxin (DT) injection into transgenic mice expressing the DT receptor under the control of the Foxp3 promoter (DTR mice). The depletion of Tregs completely eliminated IL-2/IL-2Ab-afforded neuroprotection. Interestingly, adoptive transfer of Tregs collected from IL-2/IL-2Ab-treated mice demonstrated more potent neuroprotection than an equal number of Tregs prepared from IsoAb-treated mice, suggesting that IL-2/IL-2Ab not only elevated Treg numbers, but also boosted their functions. Mechanistically, IL-2/IL-2Ab promoted the expression of CD39 and CD73 in expanded Tregs. CD73 deficiency diminished the protective effect of IL-2/IL-2Ab-stimulated Tregs in stroke mice. The results show that IL-2/IL-2Ab expands Tregs in vivo and boosts their immunomodulatory function. The activation of CD39/CD73 signaling in Tregs may participate as a potential mechanism underlying IL-2/IL-2Ab-afforded neuroprotection against ischemic brain injury.SIGNIFICANCE STATEMENT Regulatory T cells (Tregs) are known to protect against ischemic stroke. However, the low frequency of Tregs restricts their clinical utility. This study reported that systemic administration of the IL-2/IL-2 antibody complex (IL-2/IL-2Ab) robustly and selectively expanded the number of Tregs after stroke. IL-2/IL-2Ab pretreatment or posttreatment significantly improved stroke outcomes in a rodent model of ischemic stroke. We further discovered that IL-2/IL-2Ab not only elevated Treg numbers, but also boosted their functions and enhanced the expression of CD39 and CD73. Using CD73-deficient mice, we confirmed the importance of CD73 in the protective effect of IL-2/IL-2Ab-stimulated Tregs in stroke mice. These results shed light on IL-2/IL-2Ab as a clinically feasible immune therapy to boost endogenous Treg responses and ameliorate ischemic brain injury.


Assuntos
Interleucina-2/administração & dosagem , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/prevenção & controle , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Linfócitos T Reguladores/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Imunoterapia/métodos , Interleucina-2/imunologia , Ataque Isquêmico Transitório/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Acidente Vascular Cerebral/imunologia , Linfócitos T Reguladores/imunologia
12.
Chemistry ; 22(27): 9321-9, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27219903

RESUMO

A facile liquid-phase exfoliation method to prepare few-layer FeOCl nanosheets in acetonitrile by ultrasonication is reported. The detailed exfoliation mechanism and generated products were investigated by combining first-principle calculations and experimental approaches. The similar cleavage energies of FeOCl (340 mJ m(-2) ) and graphite (320 mJ m(-2) ) confirm the experimental exfoliation feasibility. As a Fenton reagent, FeOCl nanosheets showed outstanding properties in the catalytic degradation of phenol in water at room temperature, under neutral pH conditions, and with sunlight irradiation. Apart from the increased surface area of the nanosheets, the surface state change of the nanosheets also plays a key role in improving the catalytic performance. The changes of charge density, density of states (DOS), and valence state of Fe atoms in the exfoliated FeOCl nanosheets versus plates illustrated that surface atomistic relationships made the few-layer nanosheets higher activity, indicating the exfoliation process of the FeOCl nanosheets also brought about surface state changes.

13.
Phys Chem Chem Phys ; 17(41): 27391-8, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26420572

RESUMO

In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

14.
Phys Chem Chem Phys ; 16(12): 5866-74, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24549202

RESUMO

Cube-like basic aluminium sulfate crystals were prepared by a facile template-free hydrothermal strategy. The microstructures, morphologies and textural properties of as-synthesized material were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy. X-ray crystallography reveals that cubic basic aluminium sulfate possesses a single crystal nature. Chemical formation mechanism studies of sulfuric acid with γ-AlOOH were performed using a combined experimental and computational approach. Time dependent experiments reveal that formation of basic aluminium sulfate is based on the dissolution-recrystallization process, and the source of Al(3+) is from the dissolution of γ-AlOOH at high H(+) concentration. Moreover, the quantum mechanical calculations reveal that dramatic structural changes occurred in the (100) plane at high H(+) concentration, which is inferred to be the initiation of the source of Al(3+). Meanwhile, surface energy calculations can well explain the exposed plane of basic aluminium sulfate microcubes, which are consistent with the XRD results. Besides, equations to quantitatively describe the relationship between the molar amount of H(+) and the final phase are proposed, which has been confirmed by experimental results.

15.
Zhonghua Nan Ke Xue ; 20(2): 177-80, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24520674

RESUMO

OBJECTIVE: To evaluate the clinical effects of Yuleshu oral mixture combined with conventional therapy on chronic prostatitis. METHODS: Eighty-eight patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) were equally randomized to a control and an experimental group to receive conventional therapy (oral antibiotics, alpha blockers, proprietary Chinese medicine for activating blood circulation and massage of the prostate) and conventional therapy combined with Yuleshu oral mixture respectively. Before and after treatment, the severity of symptoms and sexual function of the patients were evaluated using NIH-CPSI and IIEF-5, their anxiety, depression and other emotional problems assessed with Hamilton Depression Rating Scale (HAMD) and Hamilton Anxiety Scale (HAMA), and the results subjected to statistical analysis. RESULTS: Both the experimental and control groups showed significant improvement in prostatitis symptoms and sexual function after treatment as compared with the baseline (P < 0.01), even more significant in the former than in the latter group, especially in pain symptoms (7.89 +/- 2.82 vs 10.41 +/- 2.55, P < 0.01). Before and after treatment, the HAMA and HAMD score had no significant difference in the control, but there was significant difference in the experimental group. The experimental group exhibited remarkably higher scores after than before treatment on HAMA (24.30 +/- 5.07 vs 13.80 +/- 3.62, P < 0.01) and HAMD (23.81 +/- 5.01 vs 16.23 +/- 5.93, P < 0.01), but not the control group (P > 0.05). CONCLUSION: Yuleshu oral mixture can effectively relieve anxiety, depression and other psychological problems in CP/CPPS patients, and improve their clinical symptoms as well. Therefore, it is an effective drug for chronic prostatitis.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Prostatite/tratamento farmacológico , Adolescente , Antagonistas Adrenérgicos alfa/uso terapêutico , Adulto , Doença Crônica , Quimioterapia Combinada , Humanos , Masculino , Pessoa de Meia-Idade , Dor Pélvica/tratamento farmacológico , Resultado do Tratamento , Adulto Jovem
16.
Adv Sci (Weinh) ; : e2403206, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937998

RESUMO

Recognizing the essential factor governing interfacial hydrogen/oxygen evolution reactions (HER/OER) is central to electrocatalytic water-splitting. Traditional strategies aiming at enhancing electrocatalytic activities have mainly focused on manipulating active site valencies or coordination environments. Herein, the role of interfacial adsorption is probed and modulated by the topological construct of the electrocatalyst, a frequently underestimated non-Faradaic mechanism in the dynamics of electrocatalysis. The engineered Co0.75Fe0.25P nanorods, anchored with FeOx clusters, manifest a marked amplification of the surface electric field, thus delivering a substantially improved bifunctional electrocatalytic performance. In alkaline water splitting anion exchange membrane (AEM) electrolyzer, the current density of 1.0 A cm-2 can be achieved at a cell voltage of only 1.73 V for the FeOx@Co0.75Fe0.25P|| FeOx@Co0.75Fe0.25P pairs for 120 h of continuous operation at 1.0 A cm-2. Detailed investigations of electronic structures, combined with valence state and coordination geometry assessments, reveal that the enhancement of catalytic behavior in FeOx@Co0.75Fe0.25P is chiefly attributed to the strengthened adsorptive interactions prompted by the intensified electric field at the surface. The congruent effects observed in FeOx-cluster-decorated Co0.75Fe0.25P nanosheets underscore the ubiquity of this effect. The results put forth a compelling proposition for leveraging interfacial charge densification via deliberate cluster supplementation.

17.
Adv Mater ; 36(28): e2311758, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758171

RESUMO

Thermoset elastomers have been extensively applied in many fields because of their excellent mechanical strengths and durable characteristics, such as an excellent chemical resistance. However, in the context of environmental issues, the nonrecyclability of thermosets has become a major barrier to the further development of these materials. Here, a well-tailored strategy is reported to solve this problem by introducing mismatched supramolecular interactions (MMSIs) into a covalently cross-linked poly(urethane-urea) network with dynamic acylsemicarbazide moieties. The MMSIs significantly strengthen and toughen the thermoset elastomer by effectively dissipating energy and resisting external stress. In addition, the elastomer recycling efficiency is improved 2.7-fold due to the superior reversibility of the MMSIs. The optimized thermoset elastomer features outstanding characteristics, including an ultrahigh tensile strength (110.8 MPa), an unprecedented tensile toughness (1245.2 MJ m-3), as well as remarkable resistance to chemical media, creep, and damage. Most importantly, it exhibits an extraordinary multirecyclability, and the 4th recycling efficiency remains close to 100%. This scalable method promotes the development of thermosets with both high performance and excellent recyclability, thereby providing valuable guidance for addressing the issue of nonrecyclability from a molecular design standpoint.

18.
Phys Chem Chem Phys ; 15(41): 18290-9, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24067910

RESUMO

The investigation of the metal oxide/inorganic ion interface at the atomic level represents a fundamental issue for the understanding of chemical and physical processes involved in several fields such as catalysis, adsorption, directed synthesis and the mechanistic study of crystal growth. In this paper, a combined hydrothermal synthesis and computational approach based on DFT theory is adopted to investigate the effects of sulfate ions on the final morphology of γ-AlOOH. The quantum mechanical calculations reveal that the sulfate ions interact with γ-AlOOH facets through surface hydroxyls and act as a morphology-directing agent. The adsorption type and chemical bonds between the sulfate ion and γ-AlOOH are discussed. The formation of nanosheets and nanorods of γ-AlOOH is controlled by thermodynamic factors. Moreover, the HR-TEM images reveal the growth directions and exposed planes of boehmite, indicating an oriented-aggregation process which is consistent with the DFT calculations. Overall, all the morphologies of boehmite suggested by the calculations are confirmed by experimental results.

19.
J Phys Chem B ; 127(33): 7342-7351, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556838

RESUMO

The hydrolysis process of Al(H2O)63+ induced by hydroxyl ions (OH-) is significant to aluminum solution chemistry. Previous investigations of hydrolysis reactions have primarily relied on static calculations in an implicit solvent environment. Herein, we employ ab initio molecular dynamics (AIMD) to investigate the evolution process of Al(H2O)63+ under various local alkaline conditions in an explicit solvent environment. Our work demonstrates the effect of solvent water in hydrolysis reactions. Specifically, the stepwise hydrolysis reaction induced by hydroxyl ions involves water wire compression and concerted proton transfers. Dehydration reactions occur when the number of hydroxyl ligands attached to the aluminum ion (Al3+) equals or exceeds three. Moreover, the Al(H2O)n(OH)3 species exhibit unique hydrolysis and dehydration reaction characteristics compared to other species. The geometrically stable aluminum monomers determined by AIMD are Al(H2O)5(OH)12+, Al(H2O)4(OH)2+, Al(H2O)1(OH)3, and Al(OH)4-. In addition, the topological analysis analyzes the interaction between Al3+ and coordinated H2O in different configurations, indicating the weakest interaction appearing in Al(H2O)n(OH)3 species.

20.
Int Urol Nephrol ; 55(10): 2421-2429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37368087

RESUMO

INTRODUCTION: Sanjin Paishi Decoction (SJPSD) has positive effects on stone prevention; however, there is a lack of convincing evidence in the prevention of calcium oxalate stones. This study aimed investigates the effect of SJPSD on calcium oxalate stones and to explore its mechanism. METHODS: The rat model of calcium oxalate stones was established and rats were treated with different doses of SJPSD. The pathological damage of kidney tissues was observed by HE staining, the deposition of calcium oxalate crystals in kidney tissues was examined by Von Kossa staining, and the levels of creatinine (CREA), urea (UREA), calcium (Ca), phosphorus (P), and magnesium (Mg) in serum were analyzed biochemically, the levels of IL-1ß, IL-6, and TNF-α in serum were measured by ELISA, and the protein expression of Raf1, MEK1, p-MEK1, ERK1/2, p-ERK1/2, and Cleaved caspase-3 in kidney tissues was analyzed by Western blot. Moreover, the changes in gut microbiota were analyzed by 16S rRNA sequencing. RESULTS: SJPSD attenuated the pathological damage of renal tissues, reduced the levels of CREA, UREA, Ca, P, and Mg, and inhibited the expression of Raf1, p-MEK1, p-ERK1/2, and Cleaved caspase-3 in renal tissues (P < 0.05). SJPSD treatment affected the composition of intestinal microbiota in rats with calcium oxalate stones. CONCLUSION: The mechanism of SJPSD inhibition of calcium oxalate stone injury in rats may be related to the inhibition of the MAPK signaling pathway and regulation of gut microbiota imbalance.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Ratos , Animais , Oxalato de Cálcio/metabolismo , Cálculos Renais/tratamento farmacológico , Cálculos Renais/prevenção & controle , Cálculos Renais/metabolismo , Caspase 3/metabolismo , Sistema de Sinalização das MAP Quinases , RNA Ribossômico 16S , Cálcio , Transdução de Sinais , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA