Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Transl Med ; 22(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169402

RESUMO

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Assuntos
Nefropatias Diabéticas , Ferroptose , Cálculos Renais , Humanos , Camundongos , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Oxalato de Cálcio , Histonas/metabolismo , Epigênese Genética , Rim/patologia , Nefropatias Diabéticas/metabolismo , Cálculos Renais/patologia , RNA/metabolismo , Fatores de Transcrição SOXC/metabolismo , Sistema y+ de Transporte de Aminoácidos
2.
Environ Sci Technol ; 58(28): 12477-12487, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38943037

RESUMO

Although the impacts of exotic wetland plant invasions on native biodiversity, landscape features, and carbon-nitrogen cycles are well appreciated, biogeochemical consequences posed by ecological competition, such as the heterogeneity of dissolved organic matter (DOM) from plant detritus and its impact on the formation of reactive oxygen species, are poorly understood. Thus, this study delves into O2•- photogeneration potential of DOM derived from three different parts (stem, leaf, and panicle) of invasive Spartina alterniflora (SA) and native Phragmites australis (PA). It is found that DOM from the leaves of SA and the panicles of PA has a superior ability to produce O2•-. With more stable aromatic structures and a higher proportion of sulfur-containing organic compounds, SA-derived DOM generally yields more O2•- than that derived from PA. UVA exposure enhances the leaching of diverse DOM molecules from plant detritus. Based on the reported monitoring data and our findings, the invasion of SA is estimated to approximately double the concentration of O2•- in the surrounding water bodies. This study can help to predict the underlying biogeochemical impacts from the perspective of aquatic photochemistry in future scenarios of plant invasion, seawater intrusion, wetland degradation, and elevated solar UV radiation.


Assuntos
Áreas Alagadas , Superóxidos/metabolismo , Espécies Introduzidas , Plantas/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892000

RESUMO

Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.


Assuntos
Gânglios Espinais , Neuralgia , Paclitaxel , Ratos Sprague-Dawley , Canais de Cátion TRPM , Canais de Cátion TRPV , Animais , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
4.
Medicina (Kaunas) ; 60(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38929505

RESUMO

Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.


Assuntos
Fibrose , Histonas , Insuficiência Renal Crônica , Humanos , Histonas/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Rim/patologia , Acetilação , Metilação , Processamento de Proteína Pós-Traducional , Código das Histonas
5.
BMC Microbiol ; 23(1): 143, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208622

RESUMO

BACKGROUND: Mounting evidence indicates that the gut microbiome (GMB) plays an essential role in kidney stone (KS) formation. In this study, we conducted a systematic review and meta-analysis to compare the composition of gut microbiota in kidney stone patients and healthy individuals, and further understand the role of gut microbiota in nephrolithiasis. RESULTS: Six databases were searched to find taxonomy-based comparison studies on the GMB until September 2022. Meta-analyses were performed using RevMan 5.3 to estimate the overall relative abundance of gut microbiota in KS patients and healthy subjects. Eight studies were included with 356 nephrolithiasis patients and 347 healthy subjects. The meta-analysis suggested that KS patients had a higher abundance of Bacteroides (35.11% vs 21.25%, Z = 3.56, P = 0.0004) and Escherichia_Shigella (4.39% vs 1.78%, Z = 3.23, P = 0.001), and a lower abundance of Prevotella_9 (8.41% vs 10.65%, Z = 4.49, P < 0.00001). Qualitative analysis revealed that beta-diversity was different between the two groups (P < 0.05); Ten taxa (Bacteroides, Phascolarctobacterium, Faecalibacterium, Flavobacterium, Akkermansia, Lactobacillus, Escherichia coli, Rhodobacter and Gordonia) helped the detection of kidney stones (P < 0.05); Genes or protein families of the GMB involved in oxalate degradation, glycan synthesis, and energy metabolism were altered in patients (P < 0.05). CONCLUSIONS: There is a characteristic gut microbiota dysbiosis in kidney stone patients. Individualized therapies like microbial supplementation, probiotic or synbiotic preparations and adjusted diet patterns based on individual gut microbial characteristics of patients may be more effective in preventing stone formation and recurrence.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Simbióticos , Humanos , Cálculos Renais/microbiologia , Flavobacterium , Disbiose/microbiologia
6.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924395

RESUMO

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Assuntos
Cálculos Renais , Miofibroblastos , Animais , Humanos , Camundongos , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Ácidos Graxos/metabolismo , Fibrose , Glioxilatos/metabolismo , Glioxilatos/farmacologia , Rim/patologia , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Macrófagos/metabolismo , Miofibroblastos/patologia , Oxalatos/metabolismo , Oxalatos/farmacologia , PPAR alfa/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
7.
BMC Pregnancy Childbirth ; 23(1): 549, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525112

RESUMO

BACKGROUND: Late rescue intracytoplasmic sperm injection (r-ICSI) has not been widely accepted as an alternative solution for unexpected total fertilisation failure (TFF) after in vitro fertilisation (IVF), due to the time-dependent in vitro deterioration of oocyte quality and endometrial growth not being synchronised with embryo development. This study aimed to evaluate the safety profile and effectiveness of freeze-all blastocyst transfer in combination with late r-ICSI. METHODS: This was a retrospective cohort study carried out at the Reproductive Centre of Peking University Third Hospital, Beijing, China. All participants received treatment between 2009 and 2019. 2,270 patients in the aggregate encountered unexpected TFF during 149,054 cycles of IVF and adopted a late r-ICSI procedure. Among these patients, 263 women did not have cleavage-stage embryos available for evaluation. The remaining patients were grouped according to different embryo transfer (ET) strategies (926 women in Group 1 underwent fresh ET, 365 women in Group 2 underwent freeze-all ET, 716 women in Group 3 experienced blastulation failure). Patients received different ET strategies after r-ICSI, with the main outcome measures included live birth rate (LBR), cumulative live birth rate (cLBR), and conservative cLBR. RESULTS: TFF occurred in 7.4% of all IVF cycles. Group 1 tended to be older at oocyte retrieval, with more infertile years, higher follicle-stimulating hormone (FSH) levels, higher gonadotropin consumption, and fewer oocytes retrieved. Group 2 exhibited considerably better LBRs following the first ET cycle (37.53% vs. 4.64%) and cLBRs (52.60% vs. 8.21%). After adjustment for covariates using binary logistic regression analyses, Group 2 still showed better obstetric performance in LBRs [OR:11.77, 95% CI (8.42-16.45)], cLBRs (OR:11.29, 95% CI (7.84-16.27)], and conservative cLBRs (OR:2.55, 95% CI (1.83-3.55)]. Additionally, the two groups showed similar miscarriage rates, whilst no new-borns with malformations or congenital diseases were reported. CONCLUSIONS: Freeze-all blastocyst stage ET serves as an optimal strategy to support late r-ICSI. However, for women with limited oocytes available for r-ICSI use, weighing the benefits against the costs of the procedure might be prudent before implementing in vitro blastulation.


Assuntos
Nascido Vivo , Injeções de Esperma Intracitoplásmicas , Masculino , Gravidez , Feminino , Humanos , Injeções de Esperma Intracitoplásmicas/métodos , Estudos de Coortes , Estudos Retrospectivos , Nascido Vivo/epidemiologia , Sêmen , Transferência Embrionária/métodos , Fertilização in vitro , Coeficiente de Natalidade , Fertilização , Taxa de Gravidez
8.
J Cell Mol Med ; 26(7): 1994-2009, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174626

RESUMO

The regulation of renal function by circadian gene BMAL1 has been recently recognized; however, the role and mechanism of BMAL1 in renal ischaemia-reperfusion injury (IRI) are still unknown. The purpose of this study was to clarify the pathophysiological role of BMAL1 in renal IRI. We measured the levels of BMAL1 and mitochondrial biogenesis-related proteins, including SIRT1, PGC-1α, NRF1 and TFAM, in rats with renal IRI. In rats, the level of BMAL1 decreased significantly, resulting in inhibition of SIRT1 expression and mitochondrial biogenesis. In addition, under hypoxia and reoxygenation (H/R) stimulation, BMAL1 knockdown decreased the level of SIRT1 and exacerbated the degree of mitochondrial damage and apoptosis. Overexpression of BMAL1 alleviated H/R-induced injury. Furthermore, application of the SIRT1 inhibitor EX527 not only reduced the activities of SIRT1 and PGC-1α but also further aggravated mitochondrial dysfunction and partially reversed the protective effect of BMAL1 overexpression. Moreover, whether in vivo or in vitro, the application of SIRT1 agonist resveratrol rescued the mitochondrial dysfunction caused by H/R or IRI by activating mitochondrial biogenesis. These results indicate that BMAL1 is a key circadian gene that mediates mitochondrial homeostasis in renal IRI through the SIRT1/PGC-1α axis, which provides a new direction for targeted therapy for renal IRI.


Assuntos
Fatores de Transcrição ARNTL , Rim , Traumatismo por Reperfusão , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Homeostase , Rim/metabolismo , Rim/fisiopatologia , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
J Biochem Mol Toxicol ; 36(6): e23039, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35279909

RESUMO

The proinflammatory property of cisplatin is potentially destructive and contributes to the pathogenesis of acute kidney injury (AKI). The role and upstream regulatory mechanism of histone acetyltransferase 1 (HAT1) in acute kidney inflammation are still unknown. We performed RNA sequencing to filter differentially expressed microRNAs (miRNAs) in the kidney tissue of mice with AKI induced by cisplatin and ischemia-reperfusion. Here, we found that miR-486-5p was upregulated and that the expression of HAT1 was reduced in AKI mouse models and injured human renal proximal tubular epithelial cell (HK-2) model induced by cisplatin. miR-486-5p is implicated in cisplatin-induced kidney damage in vivo. Bioinformatics analysis predicted a potential binding site between miR-486-5p and HAT1. The Luciferase reporter assay and Western blot confirmed that miR-486-5p directly targeted the 3'-untranslated region of HAT1 mRNA and inhibited its expression in the cytoplasm of HK-2 cells. In the in vitro study, inhibiting miR-486-5p reduced apoptosis, and the expression of proinflammatory mediators was induced by cisplatin in HK-2 cells. Simultaneously, the downregulation of miR-486-5p inhibited the activation of the toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). We further found that HAT1 could inhibit apoptosis and the activation of cisplatin on the TLR4/NF-κB pathway and that the upregulation of miR-486-5p reversed this effect. Therefore, the upregulation of miR-486-5p targeting HAT1 promoted the cisplatin-induced apoptosis and acute inflammation response of renal tubular epithelial cells by activating the TLR4/NF-κB pathway, providing a new basis to highlight the potential intervention of regulating the miR-486-5p/HAT1 axis.


Assuntos
Injúria Renal Aguda , MicroRNAs , Regiões 3' não Traduzidas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Cisplatino/efeitos adversos , Células Epiteliais/metabolismo , Histona Acetiltransferases/genética , Inflamação/induzido quimicamente , Inflamação/genética , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética
10.
J Cell Mol Med ; 25(22): 10684-10697, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687144

RESUMO

Bladder cancer (BC) is a major disease of the genitourinary tract, and chemotherapy is one of the main treatments commonly used at present. SC66 is a new type of allosteric AKT inhibitor that is reported to play an effective inhibitory role in the progression of many other types of tumours, but there is no reported research on its role in BC. In this study, we found that SC66 significantly inhibited the proliferation and EMT-mediated migration and invasion of T24 and 5637 cells. In addition, experiments confirmed that SC66 achieved its antitumour effect by inducing cell apoptosis and affecting the cell cycle. Luciferase assays confirmed that SC66 exerted an antitumour effect through the AKT/ß-catenin signalling pathway, and this inhibitory effect was reversed after the addition of the ß-catenin signalling pathway activator, CHIR-99021. In addition, animal studies have shown that, compared with the control group, the experimental group with SC66 intraperitoneal injection showed significantly reduced the tumour weight and volume in nude mice with T24 tumours and that SC66 combined with cisplatin achieved better inhibition on tumours. Western blot analysis and immunohistochemistry staining confirmed that SC66 inhibited the EMT process in vivo and induced apoptosis through the AKT/ß-catenin signalling pathway. In conclusion, our study demonstrated that SC66 exerts a significant antitumour effect through the AKT/ß-catenin signalling pathway, thereby providing a new potential treatment for BC.


Assuntos
Apoptose/efeitos dos fármacos , Cicloexanonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , beta Catenina/metabolismo , Animais , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Cicloexanonas/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piridinas/química , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/patologia
11.
Zhonghua Nan Ke Xue ; 26(3): 210-214, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33346958

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by 2019 novel coronavirus has become a global public health challenge. In addition to the typical respiratory symptoms, COVID-19 can induce damage to testicular spermatogenesis. This study focuses on the possible causes and follow-up monitoring of testicular injury induced by COVID-19.


Assuntos
COVID-19/complicações , Espermatogênese , Testículo/fisiopatologia , Causalidade , Surtos de Doenças , Seguimentos , Humanos , Masculino , Testículo/virologia
12.
Zhonghua Nan Ke Xue ; 26(2): 111-117, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33346412

RESUMO

OBJECTIVE: To study the effect of different levels of autophagy in the testis on the apoptosis of spermatogenic cells in the rat model of varicocele (VC). METHODS: We randomly divided 54 SD male rats into six groups, blank control (n = 6), rapamycin control (n = 6), chloroquine control (n = 6), VC model control (n = 12), VC + rapamycin (n = 12), and VC + chloroquine (n = 12). We observed the histomorphological changes of the testis and epididymis by HE staining, obtained the scores on spermatogenesis in the testis and epididymis, calculated the apoptosis index (AI) of the testicular spermatogenic cells by TUNEL, and determined the expressions of LC3-Ⅱ, LC3-Ⅰ, p62, Bax and Bcl-2 proteins in the testis tissue by Western blot. RESULTS: There were no significant morphological changes in the testis and epididymis of the rats in the blank control, rapamycin control and chloroquine control groups, or significant differences in the scores on testicular and epididymal spermatogenesis and AI of the testicular spermatogenic cells (P>0.05). The animals in the VC model control group exhibited significant pathological damage in the testicular and epididymal tissues, with remarkably decreased scores on spermatogenesis (P<0.01) and increased AI (P<0.01), which were markedly improved in the VC + rapamycin group and slightly aggravated in the VC + chloroquine group compared with the VC model controls. In comparison with the rats in the blank control group, those in the VC model control group showed significantly up-regulated expressions of the autophagy-related protein LC3 (including the LC3-Ⅱ/LC3-Ⅰ ratio) and the pro-apoptotic protein Bax in testicular tissue (P<0.01) but down-regulated expression of the anti-apoptotic protein Bcl-2 (P<0.01). The expressions of LC3 and Bcl-2 in the testis tissue were significantly higher in the VC + rapamycin (P<0.01) but lower in the VC + chloroquine group (P<0.01), while those of p62 and Bax remarkably lower in the VC + rapamycin (P<0.01) but higher in the VC + chloroquine group than in the VC model controls (P<0.01). CONCLUSIONS: Varicocele induces autophagy in the testis and apoptosis of spermatogenic cells in rats. Up-regulating autophagy can inhibit while blocking autophagy can promote the apoptosis of spermatogenic cells.


Assuntos
Autofagia , Células Germinativas/citologia , Espermatogênese , Testículo/citologia , Varicocele/fisiopatologia , Animais , Apoptose , Masculino , Ratos , Ratos Sprague-Dawley , Testículo/efeitos dos fármacos
13.
Sci Total Environ ; 927: 172333, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608896

RESUMO

Although ligand-promoted photodissolution of ferrihydrite (FH) has long been known for low molecular weight organic acids (LMWOAs), such as oxalate (Oxa) and malonate (Mal), photochemistry of coprecipitated FH with Oxa and Mal remains unknown, despite the importance of these mineral-organic associations in carbon retention has been acknowledged recently. In this study, ferrihydrite-LMWOAs associations (FLAs) were synthesized under circumneutral conditions. Photo-dissolution kinetics of FLAs were compared with those of adsorbed LMWOAs on FH surface and dissolved Fe-LMWOAs complexes through monitoring Fe(II) formation and organic carbon decay. For aqueous Fe(III)-LMWOAs complexes, Fe(II) yield was controlled by the initial concentration of LMWOAs and nature of photochemically generated carbon-centered radicals. Inner-sphere mononuclear bidentate (MB) configuration dominated while LMWOAs were adsorbed on the FH surface. MB complex of FH-Oxa was more photoreactive, leading to the rapid depletion of Oxa. Oxa can be readsorbed but in the form of binuclear bidentate and outer-sphere complexation, with much lower photoreactivity. While LMWOAs was coprecipitated with FH, the combination mode of LMWOAs with FH includes surface adsorption with a mononuclear bidentate structure and internal physical inclusion. Higher content of LMWOAs in the FLAs promoted the photo-production of Fe(II) as compared to pure FH, while it was not the case for FLAs containing moderate amounts of LMWOAs. The distinct photochemistry of adsorbed and coprecipitated Fe-LMWOAs complexes is attributed to ligand availability and configuration patterns of LMWOAs on the surface or entrapped in the interior structure. The present findings have significant implications for understanding the photochemical redox cycling of iron across the interface of Fe-organic mineral associates.

14.
Reprod Sci ; 31(5): 1353-1362, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228973

RESUMO

Due to the influence of economic, social and many other factors, there are more and more reproductive problems. Originally introduced for managing male factor infertility, intracytoplasmic sperm injection had become the most commonly used fertilization treatment in the world, with broadened indications including low oocyte yield, prior fertilization failure with conventional in vitro fertilization etc. However, academic evidence for better live-birth outcomes of intracytoplasmic sperm injection over conventional in vitro fertilization is limited. Thus, we aimed to compare the reproductive outcomes of conventional in vitro fertilization and intracytoplasmic sperm injection in patients with non-severe male factor infertility across poor and different sub-optimal ovarian response categories. The fertility rate, implantation rate, clinical pregnancy rate, live birth rate and other obstetric outcomes were mainly compared. Our results showed that independent of the number of oocytes retrieved, intracytoplasmic sperm injection significantly increased the fertilization rate, while conventional in vitro fertilization cycles showed a higher implantation rate, clinical pregnancy rate, and live birth rate. No differences were observed in most obstetric outcomes. Our study indicates that poor ovarian response is not an indication for intracytoplasmic sperm injection in couples with non-severe male infertility.


Assuntos
Fertilização in vitro , Infertilidade Masculina , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Masculino , Gravidez , Fertilização in vitro/métodos , Adulto , Infertilidade Masculina/terapia , Estudos de Coortes , Indução da Ovulação/métodos , Resultado do Tratamento , Nascido Vivo , Estudos Retrospectivos , Resultado da Gravidez
15.
Water Res ; 255: 121519, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552488

RESUMO

Whilst it is generally recognized that phosphate enables to promote the removal of some organic pollutants with peroxymonosulfate (PMS) oxidation, however, there is an ongoing debate as to whether free radicals are involved. By integrating different methodologies, here we provide new insights into the reaction mechanism of the binary mixture of phosphates (i.e., NaH2PO4, Na2HPO3, and NaH2PO2) with peroxymonosulfate (PMS) or hydrogen peroxide (H2O2). Enhanced degradation of organic pollutants and observation of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) adducts (i.e. DMPOOH and 5,5-dimethyl-2-oxopyrroline-1-oxyl (DMPOX)) with electron paramagnetic resonance (EPR) in most phosphates/PMS system seemly support a radical-dominant mechanism. However, fluorescence probe experiments confirm that no significant amount of hydroxyl radicals (•OH) are produced in such reaction systems. PMS in the phosphate solutions (without any organics) remains relatively stable, but is only consumed while organic substrates are present, which is distinct from a typical radical-dominant Co2+/PMS system where PMS is continuously decomposed. Through density functional theory (DFT) calculation, the energy barriers of the phosphates/PMS reaction processes are greatly decreased when non-radical mechanism dominates. Complementary evidence suggests that the reactive intermediates of PMS-phosphate complex, rather than the free radicals, are capable of oxidizing electron-rich substrates such as DMPO and organic pollutants. Taking the case of phosphate/PMS system as an example, this study demonstrates the necessity of acquisition of lines of evidence for resolving paradoxes in identifying EPR adducts.

17.
Sci Rep ; 13(1): 13828, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620451

RESUMO

The study aimed to assess the biocompatibility and efficacy of a prostatic urethral lift (PUL) for benign prostatic hyperplasia (BPH). Human BPH-1 cells were co-cultured with implant anchors and sutures, and cytotoxicity was measured. Scanning electron microscopy (SEM) was used to observe adhesion and growth of cells and to evaluate implant biocompatibility. Fifteen male beagle dogs were randomly assigned to the surgical (n = 9) or sham-operated (n = 6) groups. The surgical group underwent cystotomy, and PUL was used to insert two implants in each lobe of the prostate to compress the enlarged prostate and dilate the urethra; the sham group underwent cystotomy without implant insertion. Compared with the control group, no significant difference in cell viability among the groups with different co-culture times of implant anchors and sutures (P > 0.05) was observed. SEM revealed good adhesion and growth of prostate cells on the implants. Improvements in urine flow rates remained stable at 7, 28, and 180 days after surgery, and the urethral diameter in the prostate region was significantly increased compared with that before surgery. PUL is a biocompatible and effective treatment for BPH, improving the urine flow rate without causing inflammation, tissue damage, or cytotoxic effects. Here, the basis for further PUL application was provided.


Assuntos
Canidae , Hiperplasia Prostática , Animais , Cães , Humanos , Masculino , Hiperplasia , Próstata/cirurgia , Hiperplasia Prostática/cirurgia , Projetos de Pesquisa , Uretra/cirurgia
18.
Aging (Albany NY) ; 15(21): 11891-11917, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905956

RESUMO

BACKGROUND: X-C Motif Chemokine Ligand 2 (XCL2) is a 114 amino acid, structurally conserved chemokine involved in activating cytotoxic T cells. However, the pathophysiological mechanisms of XCL2 protein in various disease conditions, particularly cancer, remain poorly understood. METHODS: Bioinformatics was used to detect the expression of XCL2, the relationship between survival time and XCL2 in BLCA patients, the mutational status of XCL2, the role of XCL2 in the tumor immune microenvironment, and the sensitivity of XCL2-targeted drugs in 33 cancers. In vitro experiments were conducted to investigate the chemotactic effects of XCL2 expression on M1-type macrophages in human specimens and in isolated cancer cells. RESULTS: XCL2 expression was downregulated in tumor tissues and closely associated with the prognosis of human cancers. Furthermore, XCL2 affects DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR) in human cancers. The expression level of XCL2 significantly correlated with infiltrated immune cells, immunological pathways, and other immune markers. More importantly, we found that XCL2 was positively associated with T lymphocytes and macrophages in the transcriptome and single-cell sequencing data. Using multiple immunofluorescence staining, we found that the expression level of XCL2 was upregulated in many cells in pan-cancer samples, and the number of M1 macrophage marker CD68 and INOS-positive cells increased. 786O, U251, and MDA-MB-231 cells could recruit more M1 macrophages in vitro after overexpressing XCL2. CONCLUSIONS: Our results reveal that XCL2 could act as a vital chemokine in pan-cancer and provide new targets and concepts for cancer treatment.


Assuntos
Aminoácidos , Neoplasias , Humanos , Biomarcadores , Quimiocinas , Biologia Computacional , Metilação de DNA , Neoplasias/genética , Prognóstico , Microambiente Tumoral/genética
19.
Transl Oncol ; 27: 101578, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375375

RESUMO

The effects of transmembrane (TMEM) proteins in the progression of prostate cancer (PCa) remain unknown. This study aims to explore the functions of TMEM100 in PCa. To explore the expression, regulation, and effects of TMEM100 in PCa, two PCa cell lines and 30 PCa tissue samples with adjacent control tissues were examined. Online databases, immunohistochemistry, immunofluorescence, western blot, flow cytometry, colony formation, wound healing, transwell assays, and xenograft mouse models were used to explore effects of TMEM100 relevant to PCa. TMEM100 expression was shown to decrease in PCa patients, and low TMEM100 expression was associated with tumor stage and metastasis. Overexpression of TMEM100 suppressed PCa progression by inhibiting the FAK/PI3K/AKT signaling pathway. Tumor size was smaller in TMEM100 overexpressing PCa cells in xenograft mice than in control mice. We also found that TMEM100 could regulate SCNN1D by inhibiting FAK/PI3K/AKT signaling in PCa cell lines. Taken together, our findings indicate that TMEM100 is a tumor suppressor that plays a vital role in preventing PCa proliferation, migration, and invasion through inhibition of FAK/PI3K/AKT signaling. These studies suggest that TMEM100 can be used as a predictive biomarker and therapeutic target.

20.
Front Psychol ; 14: 1095777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910755

RESUMO

Introduction: The vestibular system is anatomically connected to extensive regions of the cerebral cortex, hippocampus, and amygdala. However, studies focusing on the impact of vestibular impairment on visuospatial cognition ability are limited. This study aimed to develop a mobile tablet-based vestibular cognitive assessment system (VCAS), enhance the dynamic and three-dimensional (3D) nature of the test conditions, and comprehensively evaluate the visuospatial cognitive ability of patients with vestibular dysfunction. Materials and methods: First, the VCAS assessment dimensions (spatial memory, spatial navigation, and mental rotation) and test content (weeding, maze, card rotation, and 3D driving tests) were determined based on expert interviews. Second, VCAS was developed based on Unity3D, using the C# language and ILruntime hot update framework development technology, combined with the A* algorithm, prime tree algorithm, and dynamic route rendering. Further, the online test was built using relevant game business logic. Finally, healthy controls (HC) and 78 patients with vertigo (VP) were recruited for the VCAS test. The validity of VCAS was verified using the test results of random controls. Results: In the weeding test, the HC group had a significantly longer span and faster velocity backward than did the VP group. In the 12 × 12 maze, statistically significant differences in step and time were observed between the two groups, with VP taking longer time and more steps. In the mental rotation task, no significant difference was observed between the two groups. Similarly, no significant difference was found in the performance of the two groups on maps 2, 3, and 4 in the 3D driving task. Discussion: Thus, impaired visuospatial cognition in patients with vestibular dysfunction is primarily related to spatial memory and navigation. VCAS is a clinically applicable visuospatial cognitive ability test for VP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA