Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
FASEB J ; 38(3): e23472, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329323

RESUMO

Allergic asthma development and pathogenesis are influenced by airway epithelial cells in response to allergens. Heme oxygenase-1 (HO-1), an inducible enzyme responsible for the breakdown of heme, has been considered an appealing target for the treatment of chronic inflammatory diseases. Herein, we report that alleviation of allergic airway inflammation by HO-1-mediated suppression of pyroptosis in airway epithelial cells (AECs). Using house dust mite (HDM)-induced asthma models of mice, we found increased gasdermin D (GSDMD) in the airway epithelium. In vivo administration of disulfiram, a specific inhibitor of pore formation by GSDMD, decreased thymic stromal lymphopoietin (TSLP) release, T helper type 2 immune response, alleviated airway inflammation, and reduced airway hyperresponsiveness (AHR). HO-1 induction by hemin administration reversed these phenotypes. In vitro studies revealed that HO-1 restrained GSDMD-mediated pyroptosis and cytokine TSLP release in AECs by binding Nuclear Factor-Kappa B (NF-κB) p65 RHD domain and thus controlling NF-κB-dependent pyroptosis. These data provide new therapeutic indications for purposing HO-1 to counteract inflammation, which contributes to allergic inflammation control.


Assuntos
Asma , Heme Oxigenase-1 , NF-kappa B , Animais , Camundongos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Piroptose , Linfopoietina do Estroma do Timo
2.
Nucleic Acids Res ; 50(8): e47, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166837

RESUMO

Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/terapia , Humanos , Camundongos , Pandemias/prevenção & controle , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/genética , SARS-CoV-2/genética
3.
J Immunol ; 207(1): 257-267, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34135060

RESUMO

Gut microbiota is increasingly linked to the development of various pulmonary diseases through a gut-lung axis. However, the mechanisms by which gut commensal microbes impact trafficking and functional transition of immune cells remain largely unknown. Using integrated microbiota dysbiosis approaches, we uncover that the gut microbiota directs the migration of group 2 innate lymphoid cells (ILC2s) from the gut to the lung through a gut-lung axis. We identify Proteobacteria as a critical species in the gut microbiome to facilitate natural ILC2 migration, and increased Proteobacteria induces IL-33 production. Mechanistically, IL-33-CXCL16 signaling promotes the natural ILC2 accumulation in the lung, whereas IL-25-CCL25 signals augment inflammatory ILC2 accumulation in the intestines upon abdominal infection, parabiosis, and cecum ligation and puncture in mice. We reveal that these two types of ILC2s play critical but distinct roles in regulating inflammation, leading to balanced host defense against infection. Overall results delineate that Proteobacteria in gut microbiota modulates ILC2 directional migration to the lung for host defense via regulation of select cytokines (IL-33), suggesting novel therapeutic strategies to control infectious diseases.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
4.
J Immunol ; 205(8): 2231-2242, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32929043

RESUMO

The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-ß axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.


Assuntos
DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , DNA Glicosilases/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
5.
J Allergy Clin Immunol ; 148(6): 1545-1558, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33957164

RESUMO

BACKGROUND: Exosomes have emerged as a vital player in cell-cell communication; however, whether airway epithelial cell (AEC)-generated exosomes participate in asthma development remains unknown. OBJECTIVE: Our aims were to characterize the AEC-secreted exosomes and the potentially functional protein(s) that may contribute to the proinflammatory effects of AEC exosomes in the dendritic cell (DC)-dominant airway allergic models and to confirm their clinical significance in patients with asthma. METHODS: Mice were treated with exosomes derived from house dust mite (HDM)-stimulated AECs (HDM-AEC-EXOs) or monocyte-derived DCs primed by HDM and/or contactin-1 (CNTN1). The numbers of DCs in the lung were determined by flow cytometry. Proteomic analysis of purified HDM-AEC-EXOs was performed. CNTN1 small interfering RNA was designed to probe its role in airway allergy, and γ-secretase inhibitor was used to determine involvement of the Notch pathway. RESULTS: HDM-AEC-EXOs facilitate the recruitment, proliferation, migration, and activation of monocyte-derived DCs in cell culture and in mice. CNTN1 in exosomes is a critical player in asthma pathology. RNA interference-mediated silencing and pharmaceutical inhibitors characterize Notch2 receptor as necessary for relaying the CNTN1 signal to activate TH2 cell/TH17 cell immune response. Studies of patients with asthma also support existence of the CNTN1-Notch2 axis that has been observed in cell and mouse models. CONCLUSION: This study's findings reveal a novel role for CNTN1 in asthma pathogenesis mediated through exosome secretion, indicating a potential strategy for the treatment of allergic airway inflammation.


Assuntos
Asma/imunologia , Contactina 1/metabolismo , Células Dendríticas/imunologia , Exossomos/metabolismo , Hipersensibilidade/imunologia , Mucosa Respiratória/metabolismo , Células Th2/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Contactina 1/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , RNA Interferente Pequeno/genética , Receptor Notch2/genética , Receptor Notch2/metabolismo
6.
J Cell Mol Med ; 25(18): 8850-8862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34414666

RESUMO

Airway epithelial cells (AECs) participate in allergic airway inflammation by producing mediators in response to allergen stimulation. Whether ovalbumin (OVA) challenge promotes exosome release from AECs (OVA-challenged AEC-derived exosomes (OAEs)), thereby affecting airway inflammation, as well as the underlying mechanisms, is unknown. Our study showed that AECs released an increased number of exosomes after OVA challenge, and the expression of Plexin B2 (PLXNB2; a natural CD100 ligand) was increased by a massive 85.7-fold in OAEs than in PBS-treated AEC-derived exosomes (PAEs). CD100+ F4/80+ macrophages engulfed OAEs to trigger the transcription of pro-inflammatory chemokines and cytokines. Plxnb2 transcripts increased in asthmatic lungs, and similarly, PLXNB2 protein was highly enriched in exosomes purified from asthmatic bronchoalveolar lavage (BAL) fluid. Furthermore, aspiration of PLXNB2 or OAEs increased the recruitment of lung neutrophils, monocytes, eosinophils and dendritic cells in OVA-challenged mice. Mechanistically, OAE aspiration enhanced the cleavage of CD100 by MMP14, which manifested as an increase in the soluble CD100 (sCD100) level in BAL fluid and lung homogenates. Knockdown of Mmp14 in macrophages prevented the cleavage of CD100 and reduced Ccl2, Ccl5 and Cxcl2 transcription. These data indicate that PLXNB2-containing OAEs aggravate airway asthmatic inflammation via cleavage of CD100 by MMP14, suggesting potential therapeutic targets of OAE-mediated asthma exacerbations.


Assuntos
Antígenos CD/imunologia , Asma/imunologia , Exossomos/imunologia , Inflamação/imunologia , Semaforinas/imunologia , Remodelação das Vias Aéreas , Animais , Linhagem Celular , Células Epiteliais , Feminino , Humanos , Metaloproteinase 14 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia
7.
J Biol Chem ; 293(48): 18454-18465, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30333233

RESUMO

Asthma is thought to be caused by malfunction of type 2 T helper cell (Th2)-mediated immunity, causing excessive inflammation, mucus overproduction, and apoptosis of airway epithelial cells. Heme oxygenase-1 (HO-1) functions in heme catabolism and is both cytoprotective and anti-inflammatory. We hypothesized that this dual function may be related to asthma's etiology. Using primary airway epithelial cells (pAECs) and an asthma mouse model, we demonstrate that severe lung inflammation is associated with rapid pAEC apoptosis. Surprisingly, NOD-like receptor protein 3 (NLRP3) inhibition, retinoid X receptor (RXR) deficiency, and HO-1 induction were associated with abrogated apoptosis. MCC950, a selective small-molecule inhibitor of canonical and noncanonical NLRP3 activation, reduced RXR expression, leading to decreased pAEC apoptosis that was reversed by the RXR agonist adapalene. Of note, HO-1 induction in a mouse model of ovalbumin-induced eosinophilic asthma suppressed Th2 responses and reduced apoptosis of pulmonary pAECs. In vitro, HO-1 induction desensitized cultured pAECs to ovalbumin-induced apoptosis, confirming the in vivo observations. Critically, the HO-1 products carbon monoxide and bilirubin suppressed the NLRP3-RXR axis in pAECs. Furthermore, HO-1 impaired production of NLRP3-RXR-induced cytokines (interleukin [IL]-25, IL-33, thymic stromal lymphopoietin, and granulocyte-macrophage colony-stimulating factor) in pAECs and lungs. Finally, we demonstrate that HO-1 binds to the NACHT domain of NLRP3 and the RXRα and RXRß subunits and that this binding is not reversed by Sn-protoporphyrin. Our findings indicate that HO-1 and its products are essential for pAEC survival to maintain airway epithelium homeostasis during NLRP3-RXR-mediated apoptosis and inflammation.


Assuntos
Apoptose/fisiologia , Asma/metabolismo , Asma/patologia , Brônquios/patologia , Heme Oxigenase-1/fisiologia , Inflamação/patologia , Proteínas de Membrana/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores X de Retinoides/metabolismo , Animais , Citocinas/biossíntese , Indução Enzimática , Epitélio/patologia , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Metaloporfirinas/metabolismo , Camundongos Endogâmicos C57BL , Protoporfirinas/metabolismo
8.
Immunology ; 158(3): 240-251, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429483

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (CRISPR-Cas) systems in prokaryotes function at defending against foreign DNAs, providing adaptive immunity to maintain homeostasis. CRISPR-Cas may also influence immune regulation ability in mammalian cells through alterations of pathogenic extent and nature. Recent research has implied that Type I CRISPR-Cas systems of Pseudomonas aeruginosa strain UCBPP-PA14 impede recognition by Toll-like receptor 4, and decrease pro-inflammatory responses both in vitro and in vivo. However, the molecular mechanism by which CRISPR-Cas systems affect host immunity is largely undemonstrated. Here, we explored whether CRISPR-Cas systems can influence autophagy to alter the activation of inflammasome. Using the wild-type PA14 and total CRISPR-Cas region deletion (∆TCR) mutant strain, we elucidated the role and underlying mechanism of Type I CRISPR-Cas systems in bacterial infection, and showed that CRISPR-Cas systems impacted the release of mitochondrial DNA and induction of autophagy. CRISPR-Cas deficiency led to an increase of mitochondrial DNA release, a decrease in autophagy, an increase of inflammasome activation and, ultimately, an elevation of pro-inflammatory response. Our findings illustrate a new important mechanism by which Type I CRISPR-Cas systems control their virulence potency to evade host defense.


Assuntos
Morte Celular Autofágica/imunologia , Sistemas CRISPR-Cas/imunologia , Evasão da Resposta Imune , Inflamassomos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade
9.
Eur J Immunol ; 48(11): 1838-1850, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30184256

RESUMO

Epithelial cells (ECs)-derived cytokines are induced by different stimuli through pattern recognition receptors (PRRs) to mount a type-2-cell-mediated immune response; however, the underlying mechanisms are poorly characterized. Here, we demonstrated asthmatic features in both primary bronchial epithelial cells (pBECs) and mouse model using several allergens including ovalbumin (OVA), house dust mite (HDM), or Alternaria alternata. We found that toll-like receptor 2 (TLR2) was highly induced in ECs but not dendritic cells (DCs) by various allergens, leading to recruitment of circulating basophils into the lung via C-C chemokine ligand-2 (CCL2). TLR2 expression increased thymic stromal lymphopoietin (TSLP) production through the NF-κB and JNK signaling pathways to extend the survival of recruited basophils and resident DCs in the lung, predisposing a type-2-cell-mediated airway inflammation. Conversely, TLR2 deficiency impaired secretion of TSLP and CCL2, decreased infiltration of lung basophils, and increased resistance to Th2 response. Blocking TSLP also phenocopied these phenomena. Our findings reveal a pro-inflammatory role of airway ECs through a TLR2-dependent TSLP production, which may have implication for treating allergic asthma.


Assuntos
Alérgenos/imunologia , Brônquios/imunologia , Células Epiteliais/imunologia , Inflamação/imunologia , Pulmão/imunologia , Alternaria/imunologia , Animais , Asma/imunologia , Basófilos/imunologia , Células Cultivadas , Quimiocina CCL2/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Pyroglyphidae/imunologia , Células Th2/imunologia , Receptor 2 Toll-Like/imunologia , Linfopoietina do Estroma do Timo
10.
J Biol Chem ; 290(20): 12523-36, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839234

RESUMO

Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40(-/-) mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation.


Assuntos
Asma/imunologia , Basófilos/imunologia , Regulação da Expressão Gênica/imunologia , Glicoproteínas de Membrana/imunologia , Células Th2/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Asma/genética , Asma/patologia , Asma/terapia , Basófilos/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Ligante OX40 , Células Th2/patologia , Fatores de Necrose Tumoral/genética
11.
Immunology ; 147(3): 321-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26879758

RESUMO

The anti-inflammatory role of heme oxygenase-1 (HO-1) has been studied extensively in many disease models including asthma. Many cell types are anti-inflammatory targets of HO-1, such as dendritic cells and regulatory T cells. In contrast to previous reports that HO-1 had limited effects on basophils, which participate in T helper type 2 immune responses and antigen-induced allergic airway inflammation, we demonstrated in this study, for the first time, that the up-regulation of HO-1 significantly suppressed the maturation of mouse basophils, decreased the expression of CD40, CD80, MHC-II and activation marker CD200R on basophils, blocked DQ-ovalbumin uptake and promoted basophil apoptosis both in vitro and in vivo, leading to the inhibition of T helper type 2 polarization. These effects of HO-1 were mimicked by exogenous carbon monoxide, which is one of the catalytic products of HO-1. Furthermore, adoptive transfer of HO-1-modified basophils reduced ovalbumin-induced allergic airway inflammation. The above effects of HO-1 can be reversed by the HO-1 inhibitor Sn-protoporphyrin IX. Moreover, conditional depletion of basophils accompanying hemin treatment further attenuated airway inflammation compared with the hemin group, indicating that the protective role of HO-1 may involve multiple immune cells. Collectively, our findings demonstrated that HO-1 exerted its anti-inflammatory function through suppression of basophil maturation and activation, but promotion of basophil apoptosis, providing a possible novel therapeutic target in allergic asthma.


Assuntos
Apoptose/imunologia , Asma/imunologia , Basófilos/imunologia , Heme Oxigenase-1/imunologia , Hipersensibilidade/imunologia , Proteínas de Membrana/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real
12.
J Biol Chem ; 289(39): 26847-26858, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25112868

RESUMO

Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD.


Assuntos
Colite/imunologia , Sulfato de Dextrana/toxicidade , Heme Oxigenase-1/farmacologia , Doenças Inflamatórias Intestinais/imunologia , Proteínas de Membrana/farmacologia , Linfócitos T Reguladores/enzimologia , Células Th17/imunologia , Doença Aguda , Animais , Colite/induzido quimicamente , Colite/enzimologia , Colite/patologia , Colo/enzimologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/enzimologia , Células Th17/patologia
13.
J Biol Chem ; 288(48): 34612-26, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24097973

RESUMO

Allergic asthma is conventionally considered as a Th2 immune response characterized by eosinophilic inflammation. Recent investigations revealed that Th17 cells play an important role in the pathogenesis of non-eosinophilic asthma (NEA), resulting in steroid-resistant neutrophilic airway inflammation. Heme oxygenase-1 (HO-1) has anti-inflammation, anti-oxidation, and anti-apoptosis functions. However, its role in NEA is still unclear. Here, we explore the role of HO-1 in a mouse model of NEA. HO-1 inducer hemin or HO-1 inhibitor tin protoporphyrin IX was injected intraperitoneally into ovalbumin-challenged DO11.10 mice. Small interfering RNA (siRNA) was delivered into mice to knock down HO-1 expression. The results show that induction of HO-1 by hemin attenuated airway inflammation and decreased neutrophil infiltration in bronchial alveolar lavage fluid and was accompanied by a lower proportion of Th17 cells in mediastinal lymph nodes and spleen. More importantly, induction of HO-1 down-regulated Th17-related transcription factor retinoic acid-related orphan receptor γt (RORγt) expression and decreased IL-17A levels, all of which correlated with a decrease in phosphorylated STAT3 (p-STAT3) level and inhibition of Th17 cell differentiation. Consistently, the above events could be reversed by tin protoporphyrin IX. Also, HO-1 siRNA transfection abolished the effect of hemin induced HO-1 in vivo. Meanwhile, the hemin treatment promoted the level of Foxp3 expression and enhanced the proportion of regulatory T cells (Tregs). Collectively, our findings indicate that HO-1 exhibits anti-inflammatory activity in the mouse model of NEA via inhibition of the p-STAT3-RORγt pathway, regulating kinetics of RORγt and Foxp3 expression, thus providing a possible novel therapeutic target in asthmatic patients.


Assuntos
Asma/genética , Heme Oxigenase-1/genética , Imunidade Inata , Inflamação/genética , Células Th17/metabolismo , Animais , Asma/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Hemina/administração & dosagem , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Metaloporfirinas/administração & dosagem , Camundongos , Neutrófilos/metabolismo , Neutrófilos/patologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Protoporfirinas/administração & dosagem , RNA Interferente Pequeno , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia
14.
Immunology ; 142(2): 202-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24383680

RESUMO

Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE-antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4.


Assuntos
Asma/imunologia , Basófilos/imunologia , Células Th2/imunologia , Animais , Feminino , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia
15.
Cell Rep ; 43(3): 113947, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492220

RESUMO

N6-methyladenosine (m6A) modification has been implicated in many cell processes and diseases. YTHDF1, a translation-facilitating m6A reader, has not been previously shown to be related to allergic airway inflammation. Here, we report that YTHDF1 is highly expressed in allergic airway epithelial cells and asthmatic patients and that it influences proinflammatory responses. CLOCK, a subunit of the circadian clock pathway, is the direct target of YTHDF1. YTHDF1 augments CLOCK translation in an m6A-dependent manner. Allergens enhance the liquid-liquid phase separation (LLPS) of YTHDF1 and drive the formation of a complex comprising dimeric YTHDF1 and CLOCK mRNA, which is distributed to stress granules. Moreover, YTHDF1 strongly activates NLRP3 inflammasome production and interleukin-1ß secretion leading to airway inflammatory responses, but these phenotypes are abolished by deleting CLOCK. These findings demonstrate that YTHDF1 is an important regulator of asthmatic airway inflammation, suggesting a potential therapeutic target for allergic airway inflammation.


Assuntos
Asma , Relógios Circadianos , Humanos , Adenosina , Células Epiteliais , Inflamação , Proteínas de Ligação a RNA/genética
16.
BMC Immunol ; 14: 28, 2013 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23800145

RESUMO

BACKGROUND: Airway inflammation is mainly mediated by T helper 2 cells (Th2) that characteristically produce interleukin (IL)-4, IL-5, and IL-13. Epidemiological studies have revealed an inverse association between the dietary intake of vitamin A and the occurrence of asthma. Serum vitamin A concentrations are significantly lower in asthmatic subjects than in healthy control subjects. It has been reported that all-trans retinoic acid (ATRA), a potent derivative of vitamin A, regulates immune responses. However, its role in Th2-mediated airway inflammation remains unclear. We investigated the effects of ATRA in a mouse model of allergic airway inflammation. RESULTS: We found that ATRA treatment attenuated airway inflammation and decreased mRNA levels of Th2- and Th17-related transcription factors. The data showed that airway inflammation coincided with levels of Th2- and Th17-related cytokines. We also showed that ATRA inhibited Th17 and promoted inducible regulatory T-cell differentiation, whereas it did not induce an obvious effect on Th2 differentiation in vitro. Our data suggest that ATRA may interfere with the in vivo Th2 responses via T-cell extrinsic mechanisms. CONCLUSIONS: Administration of ATRA dramatically attenuated airway inflammation by inhibiting Th2 and Th17 differentiation and/or functions. ATRA may have potential therapeutic effects for airway inflammation in asthmatic patients.


Assuntos
Asma/tratamento farmacológico , Asma/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Células Th17/imunologia , Células Th2/imunologia , Tretinoína/uso terapêutico , Animais , Antígenos/imunologia , Asma/complicações , Asma/patologia , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Inflamação/genética , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Células Th17/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/administração & dosagem , Tretinoína/farmacologia
17.
BMC Immunol ; 13: 34, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22769043

RESUMO

BACKGROUND: Antigen-specific immunotherapy (SIT) has been widely practiced in treating allergic diseases such as asthma. However, this therapy may induce a series of allergic adverse events during treatment. Peptide immunotherapy (PIT) was explored to overcome these disadvantages. We confirmed that multiple antigen peptides (MAPs) do not cause autoimmune responses, which led to the presumption that MAPs intervention could alleviate allergic airway inflammation without inducing adverse effects. RESULTS: In this study, synthesized OVA323-339MAP octamers were subcutaneously injected into ovalbumin (OVA)-sensitized and -challenged Balb/c mice to observe its effect on allergic airway inflammation, Th2 immune response, and immune regulating function. It was confirmed that OVA sensitization and challenge led to significant peritracheal inflammatory, cell infiltration, and intensive Th2 response. Treatment of OVA323-339MAP octomers in the airway inflammation mice model increased CD4+CD25+Foxp3+ T regulatory (Treg) cells and their regulatory function in peripheral blood, mediastinal draining lymph nodes, and the spleen. Furthermore, OVA323-339MAP increased IL-10 levels in bronchial alveolar lavage fluid (BALF); up-regulated the expression of IL-10, membrane-bound TGF-ß1, as well as Foxp3 in lung tissues; and up-regulated programmed death-1 (PD-1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4) on the surface of Treg cells. These results were further correlated with the decreased OVA specific immunoglobulin E (sIgE) level and the infiltration of inflammatory cells such as eosinophils and lymphocytes in BALF. However, OVA323-339 peptide monomers did not show any of the mentioned effects in the same animal model. CONCLUSIONS: Our study indicates that OVA323-339MAP had significant therapeutic effects on mice allergic airway inflammation by regulating the balance of Th1/Th2 response through Treg cells in vivo.


Assuntos
Dessensibilização Imunológica/métodos , Imunoglobulina E/biossíntese , Ovalbumina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Hipersensibilidade Respiratória/terapia , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Antígenos CD4/metabolismo , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Pulmão/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1 , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Antioxidants (Basel) ; 11(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35326116

RESUMO

Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.

19.
Front Immunol ; 13: 842500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615348

RESUMO

Background: Eosinophils act as a secondary antigen-presenting cell (APC) to stimulate Th cell responses against antigens. IL-25 plays a significant role in eosinophil activation in allergic asthma. The role of IL-25 on the classic APC functions of dendritic cells has been elucidated. However, whether IL-25 facilitates eosinophils for antigen presentation is unknown. Objective: To elucidate the role of IL-25 on eosinophils antigen presenting function during allergic asthma and its related mechanism. Methods: Eosinophils from allergic asthma subjects were cultured with IL-25 and HDM to identify the co-stimulator molecules expression. Co-cultures of patient eosinophils and autologous naïve CD4+ T cells in the same culture system were to explore whether eosinophils had the capacity to promote Th cell differentiation in response to IL-25 engagement. In asthma mouse model, IL-25-/- mice were exposed to HDM to investigate the effect of IL-25 on eosinophils during the sensitization phase. The impact of IL-25 on the capacity for eosinophils taking up antigens was evaluated. Mouse bone marrow derived eosinophils (BmEOS) were co-cultured with naïve CD4+T cells sorted from spleens under HDM and IL-25 stimulation to identify T cell differentiation. Results: IL-25 upregulated HLA-DR, PD-L1, and OX-40L expression on eosinophils from allergic asthma patients. IL-25 and HDM co-sensitized eosinophils promoted Th2 differentiation. In mouse model, IL-25-/- mice experienced restrained allergic pulmonary inflammation and reduced eosinophils recruitment and antigen uptake capacity during the early sensitization phase. In vitro, IL-25 promoted antigen uptake by eosinophils. In BmEOS and naïve CD4+T cells co-culture, IL-25 accreted the proportion of CD4+Th2 cells, which was absent in CD4+T cells culture alone. Conclusion: Our data identify a novel role of IL-25 in enhancing eosinophils antigen uptake and co-stimulator molecules expression to induce Th2 priming in the context of allergic inflammation.


Assuntos
Asma , Eosinofilia Pulmonar , Animais , Citocinas/metabolismo , Eosinófilos , Humanos , Camundongos , Células Th2
20.
J Leukoc Biol ; 111(4): 837-848, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296788

RESUMO

Hemin, a substrate of heme oxygenase (HO)-1, induces HO-1 expression on a variety of cells to exert anti-oxidant and anti-inflammatory roles. However, the role of HO-1 in allergic diseases for dendritic cells (DCs) is not fully understood. Here, we report that HO-1 modulates asthmatic airway inflammation by hemin-treated DC-released extracellular vesicles (DCEVs). Following induction of bone marrow-derived DCs by hemin and then by house dust mite (HDM) in vitro, mouse CD4+ naïve T cells were cocultured with DCEVs to determine T helper (h) cell differentiation. C57BL/6 mice were sensitized by different stimuli-induced DCEVs and challenged with HDM to analyze the changes of inflammatory cells and cytokines in the lung and bronchoalveolar lavage fluid. The results showed that hemin-treated DCEVs (hemin-DCEVs) express phosphatidylserine (PS), CD81, heat shock protein 70, and HO-1, which facilitates regulatory T (Treg) cells differentiation in vitro and in vivo. In HDM-induced asthmatic mouse model, hemin-DCEVs inhalation reduced eosinophils infiltration and mucus secretion in the airway, decreased the levels of IL-4, IL-5, and IL-13 in the lung and the number of Th2 cells in mediastinal lymph nodes (MLNs), and increased the number of Treg cells in MLNs. Thus, our study demonstrated, for the first time, that EVs from HO-1-overexpressing DCs alleviate allergic airway inflammation of eosinophilic asthma by potentiating Treg cells differentiation and limiting proinflammatory cytokine secretion, which expands our understanding of HO-1 function, opening the door for HO-1 inducer-like hemin as a novel therapeutic strategy for asthma or other allergic diseases.


Assuntos
Asma , Vesículas Extracelulares , Hipersensibilidade , Animais , Asma/metabolismo , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae , Células Th2/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA