Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3274-3281, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37014819

RESUMO

Landau quantization associated with the quantized cyclotron motion of electrons under magnetic field provides the effective way to investigate topologically protected quantum states with entangled degrees of freedom and multiple quantum numbers. Here we report the cascade of Landau quantization in a strained type-II Dirac semimetal NiTe2 with spectroscopic-imaging scanning tunneling microscopy. The uniform-height surfaces exhibit single-sequence Landau levels (LLs) at a magnetic field originating from the quantization of topological surface state (TSS) across the Fermi level. Strikingly, we reveal the multiple sequence of LLs in the strained surface regions where the rotation symmetry is broken. First-principles calculations demonstrate that the multiple LLs attest to the remarkable lifting of the valley degeneracy of TSS by the in-plane uniaxial or shear strains. Our findings pave a pathway to tune multiple degrees of freedom and quantum numbers of TMDs via strain engineering for practical applications such as high-frequency rectifiers, Josephson diode and valleytronics.

2.
Adv Mater ; 36(27): e2403154, 2024 Jul.
Artigo em Holandês | MEDLINE | ID: mdl-38631700

RESUMO

Van der Waals (vdW) ferromagnetic materials have emerged as a promising platform for the development of 2D spintronic devices. However, studies to date are restricted to vdW ferromagnetic materials with low Curie temperature (Tc) and small magnetic anisotropy. Here, a chemical vapor transport method is developed to synthesize a high-quality room-temperature ferromagnet, Fe3GaTe2 (c-Fe3GaTe2), which boasts a high Tc = 356 K and large perpendicular magnetic anisotropy. Due to the planar symmetry breaking, an unconventional room-temperature antisymmetric magnetoresistance (MR) is first observed in c-Fe3GaTe2 devices with step features, manifesting as three distinctive states of high, intermediate, and low resistance with the sweeping magnetic field. Moreover, the modulation of the antisymmetric MR is demonstrated by controlling the height of the surface steps. This work provides new routes to achieve magnetic random storage and logic devices by utilizing the room-temperature thickness-controlled antisymmetric MR and further design room-temperature 2D spintronic devices based on the vdW ferromagnet c-Fe3GaTe2.

3.
Nanoscale ; 15(12): 5825-5833, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857709

RESUMO

Tailoring the interlayer twist angle of bilayer graphene (BLG) significantly affects its electronic properties, including its superconductivity, topological transitions, ferromagnetic states, and correlated insulating states. These exotic electronic properties are sensitive to the work functions of BLG samples. In this study, the twist angle-dependent work functions of chemical vapour deposition-grown twisted bilayer graphene (tBLG) were investigated in detail using Kelvin probe force microscopy (KPFM) in combination with Raman spectroscopy. The thickness-dependent surface potentials of Bernal-stacked multilayer graphene were measured. It is found that with the increase in the number of layers, the work function decreases and tends to saturate. Bernal-stacked BLG and tBLG were determined via KPFM due to their twist angle-specific surface potentials. The detailed relationship between the twist angle and surface potential was determined via in situ KPFM and Raman spectral measurements. With the increase in the twist angle, the work function of tBLG will increase rapidly and then increase slowly when it is greater than 5°. The thermal stability of tBLG was investigated through a controlled annealing process. tBLG will become Bernal-stacked BLG after annealing at 350 °C. Our work provides the twist angle-dependent surface potentials of tBLG and provides the relevant conditions for the stability of the twist angle, which lays the foundation for further exploration of its twist angle-dependent electronic properties.

4.
Adv Mater ; 35(2): e2207041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281800

RESUMO

Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.

5.
Nat Commun ; 12(1): 2608, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972558

RESUMO

The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons' transfer and the generation of triplet state O2 from singlet state species (OH- or H2O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O2. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.

6.
Nat Commun ; 12(1): 3634, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131143

RESUMO

Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER, to manipulate the spin ordering of ferromagnetic OER catalysts (e.g., by magnetization) can reduce the kinetic barrier. However, most active OER catalysts are not ferromagnetic, which makes the spin manipulation challenging. In this work, we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning, simple magnetization further increases the spin alignment and thus the OER activity, which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.

7.
Nanoscale ; 11(24): 11782-11788, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184351

RESUMO

Colloid-synthesized matchstick-shaped Au-ZnO heterogeneous nanorods are found to have the Zn ion terminated plane in the ZnO-Au interface without the formation of Au-O bonds based on the atomic-resolution observation of their interfacial structure and electronic states, which is greatly different from the other reported results. The Au-ZnO heterogeneous nanorods with a good expitaxial interface have shown a stronger surface-enhanced Raman scattering (SERS) signal of the dopamine molecules than Au nanoscale seeds alone, which is attributed to the enhanced charge transfer (CT) effect of ZnO which is greatly improved by the plasmon-induced hot electron from Au nanostructures. The enhanced CT effect has also been proved by a higher photocatalysis efficiency. Furthermore, the plasmon-induced hot electron transfer mechanism in Au-ZnO heterogeneous nanorods has been confirmed by a slow rise time of electrons in the transient absorption measurements. These findings suggest the dependency of the plasmon-induced hot electron transfer mechanism on the different mixing of the metal and semiconductor band levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA