Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(9): 1912-1925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38684800

RESUMO

Ulcerative colitis (UC) is associated with changed dietary habits and mainly linked with the gut microbiota dysbiosis, necroptosis of epithelial cells, and mucosal ulcerations. Liver dysfunction and abnormal level of liver metabolism indices were identified in UC patients, suggesting a close interaction between gut and liver disorders. Methionine-choline deficient diet (MCD) has been shown to induce persistent alterations of gut microbiota and metabolome during hepatitis. In this study we further explored the disease phenotypes in UC patients and investigated whether MCD functioned as a trigger for UC susceptibility. After assessing 88 serum specimens from UC patients, we found significant liver dysfunction and dyslipidemia including abnormal ALT, AST, TG, TC, LDL-c and HDL-c. Liver dysfunction and dyslipidemia were confirmed in DSS-induced colitis mice. We fed mice with MCD for 14 days to cause mild liver damage, and then treated with DSS for 7 days. We found that MCD intake significantly exacerbated the pathogenesis of mucosal inflammation in DSS-induced acute, progressive, and chronic colitis, referring to promotion of mucosal ulcers, colon shortening, diarrhea, inflammatory immune cell infiltration, cytokines release, and abnormal activation of inflammatory macrophages in colon and liver specimens. Intraperitoneal injection of clodronate liposomes to globally delete macrophages dramatically compromised the pathogenesis of MCD-triggering colitis. In addition, MCD intake markedly changed the production pattern of short-chain fatty acids (SCFAs) in murine stools, colons, and livers. We demonstrated that MCD-induced colitis pathogenesis largely depended on the gut microbes and the disease phenotypes could be transmissible through fecal microbiota transplantation (FMT). In conclusion, this study supports the concept that intake of MCD predisposes to experimental colitis and enhances its pathogenesis via modulating gut microbes and macrophages in mice.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Macrófagos , Metionina , Camundongos Endogâmicos C57BL , Animais , Metionina/deficiência , Macrófagos/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Sulfato de Dextrana/toxicidade , Humanos , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Deficiência de Colina/complicações , Feminino , Dieta , Colina/metabolismo , Colo/patologia , Colo/microbiologia , Colo/imunologia , Colite/microbiologia , Colite/patologia , Colite/induzido quimicamente , Fígado/patologia , Fígado/metabolismo
2.
Cell Death Discov ; 10(1): 152, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521771

RESUMO

Acute lung injury (ALI) is an acute and progressive hypoxic respiratory failure that could progress to acute respiratory distress syndrome (ARDS) with a high mortality rate, thus immediate medical attention and supportive care are necessary. The pathophysiology of ALI is characterized by the disruption of the alveolar-capillary barrier and activation of neutrophils, leading to lung tissue damage. The receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising target for the treatment of multiple inflammatory diseases, but the role of RIPK1 in the ALI remains poorly understood. In this study, we aimed to figure out the pathological role of RIPK1 in ALI, especially in the pulmonary immune microenvironment involving neutrophils and endothelial cells. In vivo experiments showed that RIPK1 inhibitor protected against lipopolysaccharide (LPS)-induced lung injury in mouse models, with reduced neutrophils and monocytes infiltration in the lungs. Further studies demonstrated that, besides the inhibitory action on necroptosis, RIPK1 inhibitor directly suppressed reactive oxygen species (ROS) generation and inflammatory cytokines secretion from neutrophils. Furthermore, RIPK1 inhibition maintains the barrier function in TNF-α-primed vascular endothelial cells and prevents their activation induced by the supernatant from LPS-stimulated neutrophils. Mechanistically, the aforementioned effects of RIPK1 inhibitor are associated with the NF-κB signaling pathway, which is partially independent of necroptosis inhibition. These results provide new evidence that RIPK1 inhibitor directly regulates the function of neutrophils and endothelial cells, as well as interferes with the interactions between these two cell types, therefore contributing to a better understanding of RIPK1 in ALI and providing a potential avenue for future therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA