Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448087

RESUMO

Road scene understanding is crucial to the safe driving of autonomous vehicles. Comprehensive road scene understanding requires a visual perception system to deal with a large number of tasks at the same time, which needs a perception model with a small size, fast speed, and high accuracy. As multi-task learning has evident advantages in performance and computational resources, in this paper, a multi-task model YOLO-Object, Drivable Area, and Lane Line Detection (YOLO-ODL) based on hard parameter sharing is proposed to realize joint and efficient detection of traffic objects, drivable areas, and lane lines. In order to balance tasks of YOLO-ODL, a weight balancing strategy is introduced so that the weight parameters of the model can be automatically adjusted during training, and a Mosaic migration optimization scheme is adopted to improve the evaluation indicators of the model. Our YOLO-ODL model performs well on the challenging BDD100K dataset, achieving the state of the art in terms of accuracy and computational efficiency.


Assuntos
Veículos Autônomos , Aprendizagem , Registros , Software
2.
Free Radic Res ; 56(9-10): 640-650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583645

RESUMO

As a natural polyphenolic food supplement and the principal curcuminoid in turmeric, curcumin shows antioxidant, anti-inflammatory, and antitumor activities. However, its specific functional mechanism remains unclear. Our preliminary study indicated that miR-125b-5p was downregulated by a curcumin extract. This study aimed to determine whether miR-125b-5p is involved in the antioxidant regulation of curcumin. The results showed that miR-125b-5p overexpression had a pro-oxidant effect by reducing the cellular antioxidant capacity, as well as decreasing the activities of catalase (CAT) and superoxide dismutase (SOD) in the normal liver cell line LO2. However, miR-125b-5p repression significantly increased the cellular antioxidant capacity and enhanced the activities of CAT and SOD. Further investigation demonstrated that the cellular antioxidant capacity induced by curcumin extract was inhibited by miR-125b-5p overexpression. Thus, curcumin may exhibit antioxidant effects by repressing miR-125b-5p expression, which provides new insights into the molecular antioxidant mechanism of curcumin and other functional food components.


Assuntos
Curcumina , MicroRNAs , MicroRNAs/metabolismo , Antioxidantes/farmacologia , Curcumina/farmacologia , Fígado/metabolismo , Linhagem Celular
3.
Food Chem ; 373(Pt A): 131389, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710690

RESUMO

Reactive oxygen species (ROS) are mitochondrial respiration byproducts, the accumulation of which may cause oxidative damage and is associated with several chronic health problems. As an essential unsaturated fatty acid, eicosapentaenoic acid (EPA) provides various physiological functions; however, its exact regulatory role remains elusive. The current study aimed to address how EPA regulates cellular antioxidant capacity and the possible mechanisms of action. Upon 48 h of EPA treatment, the ROS levels of HepG2 cells were reduced by at least 40%; the total cellular antioxidant capacity was increased by approximately 50-70%, accompanied by enhanced activities and expression of major antioxidant enzymes. Furthermore, the mitochondrial membrane potential and the mitochondrial biogenesis were dramatically improved in EPA-treated cells. These data suggest that EPA improves cellular antioxidant capacity by enhancing mitochondrial function and biogenesis, which sheds light on EPA as a dietary complement to relieve the oxidative damage caused by chronic diseases.


Assuntos
Antioxidantes , Ácido Eicosapentaenoico , Antioxidantes/metabolismo , Ácido Eicosapentaenoico/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
J Agric Food Chem ; 69(5): 1647-1655, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497204

RESUMO

Reactive oxygen species (ROS) are single-electron-bearing oxidation-reduction products that are mainly produced in mitochondria. Excessive ROS accumulation may lead to oxidative damage. Docosahexaenoic acid (DHA) is an essential component of brain phospholipids and is mainly derived from the diet. Its antioxidant activities have been extensively studied. However, its regulatory roles in mitochondria and the underlying mechanism remain to be elucidated. In this study, the DHA's effect on cellular antioxidant capacity and mitochondrial functions was examined in HepG2 cells. The results showed that 100 µM DHA decreased cellular and mitochondrial ROS levels to 75.2 ± 9.4% (P < 0.05) and 55.1 ± 1.4% (P < 0.01), respectively. It also increased the total antioxidant capacity by 55.6 ± 0.1 and 49.2 ± 1.1% (P < 0.05), based on ABTS and FRAP assay results, respectively. Consistently, it increased the activities and gene expression of major antioxidant enzymes by at least 35 and 40% (P < 0.05), respectively. Furthermore, DHA promoted mitochondrial functions and biogenesis. These data suggested that DHA's antioxidant activity can be attributed to its enhancement of mitochondrial functions and biogenesis. This study may shed light on the molecular mechanisms underlying DHA's function in improving resistance to and relieving the symptoms of chronic disease.


Assuntos
Antioxidantes/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA