Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967520

RESUMO

Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.

2.
Cell Regen ; 12(1): 36, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938438

RESUMO

Whole-body regeneration is a multifaceted process that reinstates a body to its initial three-dimension size and structure after resection injury. It is well-known that signaling waves such as calcium and extracellular signal-related kinase (ERK) signaling waves can efficiently transmit information between tissues or cells. However, the mechanisms responsible for coordinating wound responses over long distances are largely unexplored. A recent study has reported that the propagation of ERK signaling waves via longitudinal body-wall muscles play an essential role in wound response and whole-body regeneration in planarians, underscoring the significance of feedback interactions between spatially distinct tissues during whole-body regeneration over long distances. These findings not only address the central questions of regenerative biology but also have potential implications for regenerative medicine.

3.
Heliyon ; 9(2): e13222, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747531

RESUMO

HIF-1α plays a crucial part in hypoxia response by transcriptionally upregulating genes to adapt the hypoxic condition. HIF-1α is under severe cellular control as its exceptional activation is always associated with tumorigenesis and tumor progression. Here, we report L3MBTL3 serves as a novel negative regulator of HIF-1α. It is upregulated during hypoxia and acts as a transcriptional target of HIF-1α. In the nuclei, L3MBTL3 makes an interaction with HIF-1α and promotes its ubiquitination and degradation. These findings indicate L3MBTL3 forms a negative feedback loop with HIF-1α in vitro to dampen the hypoxic response.

4.
NPJ Regen Med ; 8(1): 21, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029137

RESUMO

Myocardial Brg1 is essential for heart regeneration in zebrafish, but it remains unknown whether and how endothelial Brg1 plays a role in heart regeneration. Here, we found that both brg1 mRNA and protein were induced in cardiac endothelial cells after ventricular resection and endothelium-specific overexpression of dominant-negative Xenopus Brg1 (dn-xbrg1) inhibited myocardial proliferation and heart regeneration and increased cardiac fibrosis. RNA-seq and ChIP-seq analysis revealed that endothelium-specific overexpression of dn-xbrg1 changed the levels of H3K4me3 modifications in the promoter regions of the zebrafish genome and induced abnormal activation of Notch family genes upon injury. Mechanistically, Brg1 interacted with lysine demethylase 7aa (Kdm7aa) to fine-tune the level of H3K4me3 within the promoter regions of Notch family genes and thus regulated notch gene transcription. Together, this work demonstrates that the Brg1-Kdm7aa-Notch axis in cardiac endothelial cells, including the endocardium, regulates myocardial proliferation and regeneration via modulating the H3K4me3 of the notch promoters in zebrafish.

5.
Nanoscale ; 13(35): 14636-14643, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34558568

RESUMO

Mimicking and leveraging biological structures and materials provide important approaches to develop functional vehicles for drug delivery. Taking advantage of the affinity and adhesion between the activated endothelial cells and innate immune cells during inflammatory responses, hybrid polyester nanoparticles coated with endothelial cell membranes (EM-P) containing adhesion molecules were fabricated and their capability as vehicles to travel to the acute injury sites through leukocyte-mediated processes was investigated. The in vivo studies and quantitative analyses performed through the lung-inflammation mouse models demonstrated that the EM-Ps preferentially interacted with the neutrophils and monocytes in the circulation and the cellular membrane-based biosurface improved the nanoparticle transportation to the inflamed lung possibly via the motility of neutrophils. Utilizing the transgenic zebrafish model, the leukocyte-mediated transportation and biodistribution of EM-Ps were further visualized in real time at the whole-organism level. Endothelial membranes provided a new biosurface for developing biomimetic vehicles to allow the immune cell-mediated transportation and may enable advanced systems for active and highly efficient drug delivery.


Assuntos
Células Endoteliais , Nanopartículas , Animais , Leucócitos , Camundongos , Distribuição Tecidual , Peixe-Zebra
6.
J Cardiovasc Dev Dis ; 5(4)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558240

RESUMO

The zebrafish is broadly used for investigating de novo organ regeneration, because of its strong regenerative potential. Over the past two decades of intense study, significant advances have been made in identifying both the regenerative cell sources and molecular signaling pathways in a variety of organs in adult zebrafish. Epigenetic regulation has gradually moved into the center-stage of this research area, aided by comprehensive work demonstrating that DNA methylation, histone modifications, chromatin remodeling complexes, and microRNAs are essential for organ regeneration. Here, we present a brief review of how these epigenetic components are induced upon injury, and how they are involved in sophisticated organ regeneration. In addition, we highlight several prospective research directions and their potential implications for regenerative medicine.

7.
J Vis Exp ; (137)2018 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-30102293

RESUMO

Mammals have a very limited capacity to regenerate the heart after myocardial infarction. On the other hand, the adult zebrafish regenerates its heart after apex resection or cryoinjury, making it an important model organism for heart regeneration study. However, the lack of loss-of-function methods for adult organs has restricted insights into the mechanisms underlying heart regeneration. RNA interference via different delivery systems is a powerful tool for silencing genes in mammalian cells and model organisms. We have previously reported that siRNA-encapsulated nanoparticles successfully enter cells and result in a remarkable gene-specific knockdown in the regenerating adult zebrafish heart. Here, we present a simple, rapid, and efficient protocol for the dendrimer-mediated siRNA delivery and gene-silencing in the regenerating adult zebrafish heart. This method provides an alternative approach for determining gene functions in adult organs in zebrafish and can be extended to other model organisms as well.


Assuntos
Inativação Gênica/fisiologia , Coração/crescimento & desenvolvimento , Nanopartículas/metabolismo , RNA Interferente Pequeno/genética , Animais , Peixe-Zebra
8.
Nat Commun ; 7: 13787, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929112

RESUMO

The zebrafish possesses a remarkable capacity of adult heart regeneration, but the underlying mechanisms are not well understood. Here we report that chromatin remodelling factor Brg1 is essential for adult heart regeneration. Brg1 mRNA and protein are induced during heart regeneration. Transgenic over-expression of dominant-negative Xenopus Brg1 inhibits the formation of BrdU+/Mef2C+ and Tg(gata4:EGFP) cardiomyocytes, leading to severe cardiac fibrosis and compromised myocardial regeneration. RNA-seq and RNAscope analyses reveal that inhibition of Brg1 increases the expression of cyclin-dependent kinase inhibitors such as cdkn1a and cdkn1c in the myocardium after ventricular resection; and accordingly, myocardial-specific expression of dn-xBrg1 blunts myocardial proliferation and regeneration. Mechanistically, injury-induced Brg1, via its interaction with Dnmt3ab, suppresses the expression of cdkn1c by increasing the methylation level of CpG sites at the cdkn1c promoter. Taken together, our results suggest that Brg1 promotes heart regeneration by repressing cyclin-dependent kinase inhibitors partly through Dnmt3ab-dependent DNA methylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Coração/fisiologia , Miocárdio/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Metilação de DNA , Miocárdio/citologia , Regeneração , Regulação para Cima , Peixe-Zebra
10.
Cell Res ; 24(9): 1091-107, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25124925

RESUMO

While the adult human heart has very limited regenerative potential, the adult zebrafish heart can fully regenerate after 20% ventricular resection. Although previous reports suggest that developmental signaling pathways such as FGF and PDGF are reused in adult heart regeneration, the underlying intracellular mechanisms remain largely unknown. Here we show that H2O2 acts as a novel epicardial and myocardial signal to prime the heart for regeneration in adult zebrafish. Live imaging of intact hearts revealed highly localized H2O2 (~30 µM) production in the epicardium and adjacent compact myocardium at the resection site. Decreasing H2O2 formation with the Duox inhibitors diphenyleneiodonium (DPI) or apocynin, or scavenging H2O2 by catalase overexpression markedly impaired cardiac regeneration while exogenous H2O2 rescued the inhibitory effects of DPI on cardiac regeneration, indicating that H2O2 is an essential and sufficient signal in this process. Mechanistically, elevated H2O2 destabilized the redox-sensitive phosphatase Dusp6 and hence increased the phosphorylation of Erk1/2. The Dusp6 inhibitor BCI achieved similar pro-regenerative effects while transgenic overexpression of dusp6 impaired cardiac regeneration. H2O2 plays a dual role in recruiting immune cells and promoting heart regeneration through two relatively independent pathways. We conclude that H2O2 potentially generated from Duox/Nox2 promotes heart regeneration in zebrafish by unleashing MAP kinase signaling through a derepression mechanism involving Dusp6.


Assuntos
Coração/fisiologia , Peróxido de Hidrogênio/farmacologia , Regeneração/efeitos dos fármacos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Coração/efeitos dos fármacos , Técnicas In Vitro , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Modelos Biológicos , Miocárdio/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
11.
J Genet Genomics ; 39(9): 443-9, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23021544

RESUMO

Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine, one of the most urgent clinical needs for heart failure. Here we present a review on zebrafish heart development and regeneration, with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart, as well as cellular and molecular programs in adult zebrafish heart regeneration. We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration. A brief perspective highlights several important and promising research areas in this exciting field.


Assuntos
Desenvolvimento Embrionário , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Peixe-Zebra , Animais , Embrião não Mamífero , Humanos , Medicina Regenerativa , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA