Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 583(7815): 286-289, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380510

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Animais , Betacoronavirus/classificação , COVID-19 , China , Quirópteros/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Reservatórios de Doenças/virologia , Genômica , Especificidade de Hospedeiro , Humanos , Pulmão/patologia , Pulmão/virologia , Malásia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
3.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843572

RESUMO

The identification of SARS-CoV-2-like viruses in Malayan pangolins (Manis javanica) has focused attention on these endangered animals and the viruses they carry. We successfully isolated a novel respirovirus from the lungs of a dead Malayan pangolin. Similar to murine respirovirus, the full-length genome of this novel virus was 15 384 nucleotides comprising six genes in the order 3'-(leader)-NP-P-M-F-HN-l-(trailer)-5'. Phylogenetic analysis revealed that this virus belongs to the genus Respirovirus and is most closely related to murine respirovirus. Notably, animal infection experiments indicated that the pangolin virus is highly pathogenic and transmissible in mice, with inoculated mice having variable clinical symptoms and a fatality rate of 70.37 %. The virus was found to replicate in most tissues with the exception of muscle and heart. Contact transmission of the virus was 100 % efficient, although the mice in the contact group displayed milder symptoms, with the virus mainly being detected in the trachea and lungs. The isolation of a novel respirovirus from the Malayan pangolin provides new insight into the evolution and distribution of this important group of viruses and again demonstrates the potential infectious disease threats faced by endangered pangolins.


Assuntos
Pangolins/virologia , Infecções por Respirovirus , Respirovirus , Animais , Espécies em Perigo de Extinção , Feminino , Genoma Viral , Camundongos , Filogenia , Respirovirus/classificação , Respirovirus/isolamento & purificação , Respirovirus/patogenicidade , Infecções por Respirovirus/epidemiologia , Infecções por Respirovirus/veterinária , Infecções por Respirovirus/virologia
4.
BMC Microbiol ; 16(1): 125, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27343075

RESUMO

BACKGROUND: Pasteurella multocida (P. multocida) is an important veterinary pathogen that can cause severe diseases in a wide range of mammals and birds. The global regulator crp gene has been found to regulate the virulence of some bacteria, and crp mutants have been demonstrated to be effective attenuated vaccines against Salmonella enterica and Yersinia enterocolitica. Here, we first characterized the crp gene in P. multocida, and we report the effects of a crp deletion. RESULTS: The P. multocida crp mutant exhibited a similar lipopolysaccharide and outer membrane protein profile but displayed defective growth and serum complement resistance in vitro compared with the parent strain. Furthermore, crp deletion decreased virulence but did not result in full attenuation. The 50 % lethal dose (LD50) of the Δcrp mutant was 85-fold higher than that of the parent strain for intranasal infection. Transcriptome sequencing analysis showed that 92 genes were up-regulated and 94 genes were down-regulated in the absence of the crp gene. Finally, we found that intranasal immunization with the Δcrp mutant triggered both systematic and mucosal antibody responses and conferred 60 % protection against virulent P. multocida challenge in ducks. CONCLUSION: The deletion of the crp gene has an inhibitory effect on bacterial growth and bacterial resistance to serum complement in vitro. The P. multocida crp mutant was attenuated and conferred moderate protection in ducks. This work affords a platform for analyzing the function of crp and aiding the formulation of a novel vaccine against P. multocida.


Assuntos
Proteínas de Bactérias/genética , Doenças das Aves/microbiologia , Deleção de Genes , Infecções por Pasteurella/veterinária , Pasteurella multocida/imunologia , Pasteurella multocida/patogenicidade , Doenças das Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/imunologia , Patos , Infecções por Pasteurella/microbiologia , Pasteurella multocida/genética , Pasteurella multocida/crescimento & desenvolvimento , Fenótipo , Deleção de Sequência , Virulência
5.
Int J Mol Sci ; 17(1)2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26703595

RESUMO

Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida.


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Pasteurella multocida/genética , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Patos , Imunoglobulinas/imunologia , Pasteurella multocida/imunologia , Pasteurella multocida/patogenicidade , Transcriptoma , Virulência/genética
6.
ISME J ; 16(8): 1980-1992, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568757

RESUMO

Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in response to the low-nutrient bamboo diet.


Assuntos
Microbioma Gastrointestinal , Ursidae , Animais , Bactérias/genética , Ácidos Graxos Voláteis , Lignina , Ácidos Linoleicos , Ursidae/microbiologia
7.
Microbiome ; 10(1): 14, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35074015

RESUMO

BACKGROUND: Early gut microbial colonization is important for postnatal growth and immune development of the chicken. However, at present, commercial chickens are hatched and raised without adult hens, thus are cut off from the microbiota transfer between hens and chicks. In this study, we compared the gut microbiota composition between hen-reared and separately reared chicks, and its impact on the resistance to H9N2 avian influenza virus, with the motive of investigating the impact of this cutoff in microbiota transfer. RESULTS: We used the 16SrRNA sequencing method to assess the composition of the gut microbiota in chicks represented by three hen-reared groups and one separately reared group. We found that the diversity of gut microbes in the chicks from the three hen-reared groups was more abundant than in the separately reared group, both at the phylum and genus levels. Our findings highlight the importance of early parental care in influencing the establishment of gut microbiota in the early life of chicks. SourceTracker analysis showed that the feather and cloaca microbiota of hens are the main sources of gut microbiota of chicks. After H9N2 exposure, the viral infection lasted longer in the separately reared chicks, with the viral titers in their oropharyngeal swabs being higher compared to the hen-reared chicks at day 5 post-infection. Interestingly, our results revealed that the gut microbiota of the hen-reared chicks was more stable after H9N2 infection in comparison to that of the separately reared chicks. CONCLUSIONS: Microbiota transfer between the hens and their chicks promotes the establishment of a balanced and diverse microbiota in the early life of the chicks and improves microbiota stability after H9N2 challenge. These findings advance our understanding of the protective role of gut microbiota in the early life of chicks and should be instrumental in improving chick rearing in the commercial poultry industry. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Vírus da Influenza A Subtipo H9N2 , Microbiota , Animais , Galinhas , Cloaca , Feminino
8.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980682

RESUMO

Opportunistic feeding and multiple other environment factors can modulate the gut microbiome, and bias conclusions, when wild animals are used for studying the influence of phylogeny and diet on their gut microbiomes. Here, we controlled for these other confounding factors in our investigation of the magnitude of the effect of diet on the gut microbiome assemblies of nonpasserine birds. We collected fecal samples, at one point in time, from 35 species of birds in a single zoo as well as 6 species of domestic poultry from farms in Guangzhou city to minimize the influences from interfering factors. Specifically, we describe 16S rRNA amplicon data from 129 fecal samples obtained from 41 species of birds, with additional shotgun metagenomic sequencing data generated from 16 of these individuals. Our data show that diets containing native starch increase the abundance of Lactobacillus in the gut microbiome, while those containing plant-derived fiber mainly enrich the level of Clostridium Greater numbers of Fusobacteria and Proteobacteria are detected in carnivorous birds, while in birds fed a commercial corn-soybean basal diet, a stronger inner-connected microbial community containing Clostridia and Bacteroidia was enriched. Furthermore, the metagenome functions of the microbes (such as lipid metabolism and amino acid synthesis) were adapted to the different food types to achieve a beneficial state for the host. In conclusion, the covariation of diet and gut microbiome identified in our study demonstrates a modulation of the gut microbiome by dietary diversity and helps us better understand how birds live based on diet-microbiome-host interactions.IMPORTANCE Our study identified food source, rather than host phylogeny, as the main factor modulating the gut microbiome diversity of nonpasserine birds, after minimizing the effects of other complex interfering factors such as weather, season, and geography. Adaptive evolution of microbes to food types formed a dietary-microbiome-host interaction reciprocal state. The covariation of diet and gut microbiome, including the response of microbiota assembly to diet in structure and function, is important for health and nutrition in animals. Our findings help resolve the major modulators of gut microbiome diversity in nonpasserine birds, which had not previously been well studied. The diet-microbe interactions and cooccurrence patterns identified in our study may be of special interest for future health assessment and conservation in birds.


Assuntos
Bactérias/genética , Aves/microbiologia , Dieta , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Metagenômica , Filogenia , Aves Domésticas/microbiologia , RNA Ribossômico 16S/genética
10.
Microbiome ; 6(1): 211, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482240

RESUMO

BACKGROUND: Sub-therapeutic antibiotics are widely used as growth promoters in the poultry industry; however, the resulting antibiotic resistance threatens public health. A plant-derived growth promoter, Macleaya cordata extract (MCE), with effective ingredients of benzylisoquinoline alkaloids, is a potential alternative to antibiotic growth promoters. Altered intestinal microbiota play important roles in growth promotion, but the underlying mechanism remains unknown. RESULTS: We generated 1.64 terabases of metagenomic data from 495 chicken intestinal digesta samples and constructed a comprehensive chicken gut microbial gene catalog (9.04 million genes), which is also the first gene catalog of an animal's gut microbiome that covers all intestinal compartments. Then, we identified the distinctive characteristics and temporal changes in the foregut and hindgut microbiota. Next, we assessed the impact of MCE on chickens and gut microbiota. Chickens fed with MCE had improved growth performance, and major microbial changes were confined to the foregut, with the predominant role of Lactobacillus being enhanced, and the amino acids, vitamins, and secondary bile acids biosynthesis pathways being upregulated, but lacked the accumulation of antibiotic-resistance genes. In comparison, treatment with chlortetracycline similarly enriched some biosynthesis pathways of nutrients in the foregut microbiota, but elicited an increase in antibiotic-producing bacteria and antibiotic-resistance genes. CONCLUSION: The reference gene catalog of the chicken gut microbiome is an important supplement to animal gut metagenomes. Metagenomic analysis provides insights into the growth-promoting mechanism of MCE, and underscored the importance of utilizing safe and effective growth promoters.


Assuntos
Benzilisoquinolinas/farmacologia , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Substâncias de Crescimento/farmacologia , Lactobacillus/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Animais , Microbioma Gastrointestinal/genética , Probióticos/farmacologia , Ranunculales/química
11.
Vet Microbiol ; 186: 189-98, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016773

RESUMO

DNA vaccines are widely used to prevent and treat infectious diseases, cancer and autoimmune diseases; however, their relatively low immunogenicity is an obstacle to their use. In this study, we constructed a novel and universal DNA vaccine vector (pSS898) that can be used to build DNA vaccines against duck enteritis virus (DEV) and other viruses that require DNA vaccines to provide protection. This vaccine vector has many advantages, including innate immunogenicity, efficient nuclear trafficking and resistance to attack from nucleases. UL24 and tgB from DEV were chosen as the antigens, and the heat labile enterotoxin B subunit (LTB) from Escherichia coli and the IL-2 gene (DuIL-2) from duck were used as adjuvants for the construction of DNA vaccine plasmids. Ducklings that were orally immunized with S739 (Salmonella Typhimurium Δasd-66 Δcrp-24 Δcya-25) and harboring these DEV DNA vaccines produced strong mucosal and systemic immune responses, and they resisted an otherwise lethal DEV challenge. More importantly, S739 (UL24-LTB) provided 90% protection after a priming-boost immunization. This study shows that our novel and universal DNA vaccine vector can be used efficiently in practical applications and may provide a promising method of orally inoculating ducks with a DEV DNA vaccine delivered by attenuated Salmonella Typhimurium for prevention of DVE.


Assuntos
Patos/imunologia , Infecções por Herpesviridae/veterinária , Doenças das Aves Domésticas/prevenção & controle , Salmonella typhimurium/imunologia , Vacinação/métodos , Vacinas de DNA , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Células COS , Chlorocebus aethiops , Patos/genética , Patos/virologia , Escherichia coli/genética , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/mortalidade , Infecções por Herpesviridae/prevenção & controle , Imunidade nas Mucosas/imunologia , Mardivirus/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/virologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA