RESUMO
BACKGROUND: Flavonoids are one of the bioactive ingredients of Lonicera macranthoides (L. macranthoides), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabolomic analyses were performed to clarify the flavonoids biosynthesis during flowering of L. macranthoides. RESULTS: In the three sample groups, GB_vs_WB, GB_vs_WF and GB_vs_GF, there were 25, 22 and 18 differentially expressed genes (DEGs) in flavonoids biosynthetic pathway respectively. A total of 339 flavonoids were detected and quantified at four developmental stages of flower in L. macranthoides. In the three sample groups, 113, 155 and 163 differentially accumulated flavonoids (DAFs) were detected respectively. Among the DAFs, most apigenin derivatives in flavones and most kaempferol derivatives in flavonols were up-regulated. Correlation analysis between DEGs and DAFs showed that the down-regulated expressions of the CHS, DFR, C4H, F3'H, CCoAOMT_32 and the up-regulated expressions of the two HCTs resulted in down-regulated levels of dihydroquercetin, epigallocatechin and up-regulated level of kaempferol-3-O-(6''-O-acetyl)-glucoside, cosmosiin and apigenin-4'-O-glucoside. The down-regulated expressions of F3H and FLS decreased the contents of 7 metabolites, including naringenin chalcone, proanthocyanidin B2, B3, B4, C1, limocitrin-3,7-di-O-glucoside and limocitrin-3-O-sophoroside. CONCLUSION: The findings are helpful for genetic improvement of varieties in L.macranthoides.
Assuntos
Lonicera , Lonicera/genética , Apigenina , Quempferóis , Perfilação da Expressão Gênica , Flavonoides , Flores/genética , GlucosídeosRESUMO
PREMISE OF THE STUDY: We developed microsatellite makers for Parakmeria nitida to investigate its population structure and conservation genetics. METHODS AND RESULTS: A total of 25 microsatellite primer pairs were developed using the Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO) protocol, and polymorphism was assessed in three natural populations of P. nitida. Among these markers, 11 were monomorphic and 14 showed polymorphism. CONCLUSIONS: These markers are potentially useful for future population genetic analyses of P. nitida and will serve as an important tool for conservation efforts.
Assuntos
Magnolia/genética , Repetições de Microssatélites/genética , Folhas de Planta/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Primers do DNA/genética , DNA de Plantas/química , DNA de Plantas/genética , Genótipo , Desequilíbrio de Ligação , Magnolia/classificação , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Sequência de DNARESUMO
PREMISE OF THE STUDY: Microsatellite makers were developed for Clematoclethra scandens to investigate its population genetics and speciation. METHODS AND RESULTS: A total of 36 microsatellite markers were isolated using the Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO) method. Their polymorphisms were assessed in two natural populations. The results showed that 30 markers displayed prominent polymorphisms and six markers were monomorphic. CONCLUSIONS: These microsatellite loci will facilitate further studies on population genetics and speciation of C. scandens.
Assuntos
Actinidiaceae/genética , Variação Genética , Repetições de Microssatélites/genética , Folhas de Planta/genética , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Primers do DNA/genética , DNA de Plantas/química , DNA de Plantas/genética , Dados de Sequência Molecular , Polimorfismo Genético , Análise de Sequência de DNARESUMO
Molecular studies of six species from the ancient extant seed plant Cycas, covering a wide range of its morphological diversity and all major areas of distribution, revealed a high level of intra-individual polymorphism of the internal transcribed spacer (ITS1, 5.8S, and ITS2) region, indicative of incomplete nrDNA concerted evolution. Through a range of comparisons of sequence characteristics to functional cDNA ITS copies, including sequence length and substitution variation, GC content, secondary structure stability, the presence of a conserved motif in the 5.8S gene, and evolutionary rates, the PCR amplified divergent genomic DNA ITS paralogs were identified as either putative pseudogenes, recombinants or functional paralogs. This incomplete ITS concerted evolution may be linked to the high number of nucleolar organizer regions in the Cycas genome, and the incomplete lineage sorting due to recent species divergence in the genus. Based on the distribution of a 14 bp deletion, an early evolutionary origin of the pseudogenes is indicated, possibly predating the diversification of Cycas. Due to their early origin combined with the unconstraint evolution of the ITS region in pseudogenes, they accumulate high levels of homoplastic mutations. This leads to random relationships among the pseudogenes due to long-branch attractions, whereas the phylogenetic relationships inferred from the functional ITS paralogs grouped the sequences in species specific clades (except for C. circinalis and C. rumphii). The findings of our extensive study will have a wide significance, for the evolution of these molecular sequences, and their utilization as a major marker for reconstructing phylogenies.
Assuntos
Cycas/genética , DNA Espaçador Ribossômico/genética , Filogenia , Polimorfismo Genético , Pseudogenes , Composição de Bases , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas , Modelos Genéticos , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNARESUMO
Chromosomes of four Miscanthus (Andersson, 1855) species including M. sinensis (Andersson, 1855), M. floridulus (Schumann & Lauterb, 1901), M. sacchariflorus (Hackel, 1882) and M. lutarioriparius (Chen & Renvoize, 2005) were analyzed using sequentially combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. To elucidate the phylogenetic relationship among the four Miscanthus species, the homology of repetitive sequences among the four species was analyzed by comparative genomic in situ hybridization (cGISH). Subsequently four Miscanthus species were clustered based on the internal transcribed spacer (ITS) of 45S rDNA. Molecular cytogenetic karyotypes of the four Miscanthus species were established for the first time using chromosome measurements, fluorochrome bands and 45S rDNA FISH signals, which will provide a cytogenetic tool for the identification of these four species. All the four have the karyotype formula of Miscanthus species, which is 2n = 2x = 38 = 34m(2SAT) + 4sm, and one pair of 45S rDNA sites. The latter were shown as strong red bands by CPD staining. A non-rDNA CPD band emerged in M. floridulus and some blue DAPI bands appeared in M. sinensis and M. floridulus. The hybridization signals of M. floridulus genomic DNA to the chromosomes of M. sinensis and M. lutarioriparius genomic DNA to the chromosomes of M. sacchariflorus were stronger and more evenly distributed than other combinations. Molecular phylogenetic trees showed that M. sinensis and M. floridulus were closest relatives, and M. sacchariflorus and M. lutarioriparius were also closely related. These findings were consistent with the phylogenetic relationships inferred from the cGISH patterns.
RESUMO
Cycas is the most widespread and diverse genus among the ancient cycads, but the extant species could be the product of late Miocene rapid radiations. Taxonomic treatments to date for this genus are quite controversial, which makes it difficult to elucidate its evolutionary history. We cloned 161 genomic ITS sequences from 31 species representing all sections of Cycas. The divergent ITS paralogs were examined within each species and identified as putative pseudogenes, recombinants and functional paralogs. Functional paralogs were used to reconstruct phylogenetic relationships with pseudogene sequences as molecular outgroups, since an unambiguous ITS sequence alignment with their closest relatives, the Zamiaceae, is unachievable. A fully resolved and highly supported tree topology was obtained at the section level, with two major clades including six minor clades. The results fully supported the classification scheme proposed by Hill (2004) at the section level, with the minor clades representing his six sections. The two major clades could be recognised as two subgenera. The obtained pattern of phylogenetic relationships, combined with the different seed dispersal capabilities and paleogeography, allowed us to propose a late Miocene rapid radiation of Cycas that might have been promoted by vicariant events associated with the complex topography and orogeny of South China and adjacent regions. In contrast, transoceanic dispersals might have played an important role in the rapid diversification of sect. Cycas, whose members have evolved a spongy layer in their seeds aiding water dispersals.
Assuntos
Núcleo Celular/genética , Cycas/genética , DNA Espaçador Ribossômico/genética , Filogenia , Homologia de Sequência do Ácido Nucleico , Sequência de Bases , Funções Verossimilhança , Filogeografia , Especificidade da Espécie , Fatores de TempoRESUMO
BACKGROUND AND AIMS: The Cycas balansae complex is arguably a controversial group with regard to species delineation. Some taxonomists recognize a single polymorphic species while others distinguish five narrowly defined ones. The unresolved taxonomy has the potential to bring about significant problems for species conservation. Thus, an investigation to examine the genetic diversity and differentiation in the C. balansae complex was performed to determine the relationship of populations and to test whether the morphologically defined segregations represent genetically distinct units. METHODS: Inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity in the C. balansae complex with a sample of 158 individuals from all extant populations in China. KEY RESULTS: ISSR markers revealed low genetic diversity in all populations studied (H(E) and H(O) averaged 0.0639 and 0.0798 at the population level, respectively). Phenetic analysis showed that the C. balansae complex grouped into five clusters closely corresponding to the narrowly defined C. balansae, C. parvula, C. shiwandashanica, C. tanqingii and C. simplicipinna. CONCLUSIONS: ISSR data suggest that the C. balansae complex has evolved into five genetically distinct units. These might be derived from a relatively widespread common ancestor through multiple vicariant events including geographical isolation resulting from the collision of the Indian plate with the Eurasian plate and from Pleistocene glaciations. In conservation, attention should be paid to each genetic unit.
Assuntos
Evolução Biológica , Cycas/genética , Variação Genética , China , Conservação dos Recursos Naturais , Marcadores GenéticosRESUMO
BACKGROUND AND AIMS: Cycas guizhouensis (Cycadaceae) is a rare and endangered species endemic to the southwest of China. An investigation was undertaken into the genetic variation of wild populations. METHODS: ISSR markers were used to determine the genetic variation within and between 12 extant populations of this species. KEY RESULTS: Low genetic diversity (at population level, P = 14.21 %, H(E) = 0.0597; at species level, P = 35.90 %, H(T) = 0.1082) and a high degree of differentiation among populations (G(ST) = 0.4321) were detected. CONCLUSIONS: This genetic structure is considered to be due to the combined effects of slow biochemical evolution, genetic drift, inbreeding and limited gene flow between populations. Based on these findings, strategies are proposed for the genetic conservation and management of the species.