Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Blood Press Res ; 49(1): 430-442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797171

RESUMO

BACKGROUND: N-glycosylation is one of the most common posttranslational modifications in humans, and these alterations are associated with kidney diseases. METHODS: A novel technological approach, single-cell N-acetyllactosamine sequencing (scLacNAc-seq), was applied to simultaneously detect N-glycosylation expression and the transcriptome at single-cell resolution in three human kidney tissues from zero-time biopsy. Cell clusters, glycation abundance in each cell cluster, functional enrichment analysis, cell-cell crosstalk, and pseudotime analysis were applied. RESULTS: Using scLacNAc-seq, 24,247 cells and 22 cell clusters were identified, and N-glycan abundance in each cell was obtained. Transcriptome analysis revealed a close connection between capillary endothelial cells (CapECs) and parietal epithelial cells (PECs). PECs and CapECs communicate with each other through several pairs of ligand receptors (e.g., TGFB1-EGFR, GRN-EGFR, TIMP1-FGFR2, VEGFB-FLT1, ANGPT2-TEK, and GRN-TNFRSF1A). Finally, a regulatory network of cell-cell crosstalk between PECs and CapECs was constructed, which is involved in cell development. CONCLUSIONS: We here, for the first time, constructed the glycosylation profile of 22 cell clusters in the human kidney from zero-time biopsy. Moreover, cell-cell communication between PECs and CapECs through the ligand-receptor system may play a crucial regulatory role in cell proliferation.


Assuntos
Comunicação Celular , Células Endoteliais , Células Epiteliais , Rim , Humanos , Glicosilação , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Rim/citologia , Análise de Célula Única
2.
Acta Pharmacol Sin ; 43(1): 111-120, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758357

RESUMO

Treatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild-type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular function and counterregulatory stimulation of ENaC-mediated sodium transport.


Assuntos
Aprotinina/metabolismo , Túbulos Renais/metabolismo , Inibidores de Serina Proteinase/metabolismo , Animais , Aprotinina/administração & dosagem , Aprotinina/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Injeções Subcutâneas , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/efeitos adversos , Relação Estrutura-Atividade
3.
Am J Physiol Renal Physiol ; 321(4): F480-F493, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423678

RESUMO

Proteolytic activation of the renal epithelial Na+ channel (ENaC) involves cleavage events in its α- and γ-subunits and is thought to mediate Na+ retention in nephrotic syndrome (NS). However, the detection of proteolytically processed ENaC in kidney tissue from nephrotic mice has been elusive so far. We used a refined Western blot technique to reliably discriminate full-length α-ENaC and γ-ENaC and their cleavage products after proteolysis at their proximal and distal cleavage sites (designated from the NH2-terminus), respectively. Proteolytic ENaC activation was investigated in kidneys from mice with experimental NS induced by doxorubicin or inducible podocin deficiency with or without treatment with the serine protease inhibitor aprotinin. Nephrotic mice developed Na+ retention and increased expression of fragments of α-ENaC and γ-ENaC cleaved at both the proximal cleavage site and, more prominently, the distal cleavage site, respectively. Treatment with aprotinin but not with the mineralocorticoid receptor antagonist canrenoate prevented Na+ retention and upregulation of the cleavage products in nephrotic mice. Increased expression of cleavage products of α-ENaC and γ-ENaC was similarly found in healthy mice treated with a low-salt diet, sensitive to mineralocorticoid receptor blockade. In human nephrectomy specimens, γ-ENaC was found in the full-length form and predominantly cleaved at its distal cleavage site. In conclusion, murine experimental NS leads to aprotinin-sensitive proteolytic activation of ENaC at both proximal and, more prominently, distal cleavage sites of its α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.NEW & NOTEWORTHY This study demonstrates that murine experimental nephrotic syndrome leads to aprotinin-sensitive proteolytic activation of the epithelial Na+ channel at both the α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/metabolismo , Aldosterona/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Aprotinina/farmacologia , Doxorrubicina/toxicidade , Canais Epiteliais de Sódio/genética , Feminino , Humanos , Rim/metabolismo , Masculino , Camundongos , Subunidades Proteicas , Proteólise , Triantereno/farmacologia
4.
Kidney Int ; 100(6): 1227-1239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537228

RESUMO

Anemia is a common complication of chronic kidney disease, affecting the quality of life of patients. Among various factors, such as iron and erythropoietin deficiency, reduced red blood cell (RBC) lifespan has been implicated in the pathogenesis of anemia. However, mechanistic data on in vivo RBC dysfunction in kidney disease are lacking. Herein, we describe the development of chronic kidney disease-associated anemia in mice with proteinuric kidney disease resulting from either administration of doxorubicin or an inducible podocin deficiency. In both experimental models, anemia manifested at day 10 and progressed at day 30 despite increased circulating erythropoietin levels and erythropoiesis in the bone marrow and spleen. Circulating RBCs in both mouse models displayed altered morphology and diminished osmotic-sensitive deformability together with increased phosphatidylserine externalization on the outer plasma membrane, a hallmark of RBC death. Fluorescence-labelling of RBCs at day 20 of mice with doxorubicin-induced kidney disease revealed premature clearance from the circulation. Metabolomic analyses of RBCs from both mouse models demonstrated temporal changes in redox recycling pathways and Lands' cycle, a membrane lipid remodeling process. Anemic patients with proteinuric kidney disease had an increased proportion of circulating phosphatidylserine-positive RBCs. Thus, our observations suggest that reduced RBC lifespan, mediated by altered RBC metabolism, reduced RBC deformability, and enhanced cell death contribute to the development of anemia in proteinuric kidney disease.


Assuntos
Anemia , Insuficiência Renal Crônica , Anemia/induzido quimicamente , Animais , Eritrócitos , Humanos , Longevidade , Camundongos , Qualidade de Vida , Insuficiência Renal Crônica/complicações
5.
J Drug Target ; : 1-10, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38753446

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.

6.
Front Clin Diabetes Healthc ; 4: 1270028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143793

RESUMO

Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.

7.
Acta Physiol (Oxf) ; 235(3): e13844, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569011

RESUMO

Sodium retention and edema are hallmarks of nephrotic syndrome (NS). Different experimental rodent models have been established for simulating NS, however, not all of them feature sodium retention which requires proteinuria to exceed a certain threshold. In rats, puromycin aminonucleoside nephrosis (PAN) is a classic NS model introduced in 1955 that was adopted as doxorubicin-induced nephropathy (DIN) in 129S1/SvImJ mice. In recent years, mice with inducible podocin deletion (Nphs2Δipod ) or podocyte apoptosis (POD-ATTAC) have been developed. In these models, sodium retention is thought to be caused by activation of the epithelial sodium channel (ENaC) in the distal nephron through aberrantly filtered serine proteases or proteasuria. Strikingly, rodent NS models follow an identical chronological time course after the development of proteinuria featuring sodium retention within days and spontaneous reversal thereafter. In DIN and Nphs2Δipod mice, inhibition of ENaC by amiloride or urinary serine protease activity by aprotinin prevents sodium retention, opening up new and promising therapeutic approaches that could be translated into the treatment of nephrotic patients. However, the essential serine protease(s) responsible for ENaC activation is (are) still unknown. With the use of nephrotic rodent models, there is the possibility that this (these) will be identified in the future. This review summarizes the various rodent models used to study experimental nephrotic syndrome and the insights gained from these models with regard to the pathophysiology of sodium retention.


Assuntos
Síndrome Nefrótica , Animais , Doxorrubicina , Canais Epiteliais de Sódio/genética , Humanos , Camundongos , Síndrome Nefrótica/induzido quimicamente , Proteinúria , Ratos , Roedores/metabolismo , Serina Proteases/efeitos adversos , Sódio/metabolismo
8.
Foods ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613303

RESUMO

The COVID-19 pandemic increased public health awareness, changing consumers' sensitivity and beliefs about food health. Food anxiety and health scares turn consumers toward safe and healthy foods to strengthen their immunity, which makes green food more popular. However, it remains unclear how to understand the gap between consumer intention to purchase green food and their actual purchasing behaviour. Taking rice as an object of study, comparing differences in consumer perceptions and emotions towards green-labelled rice and conventional rice is beneficial for understanding the components and psychological characteristics of consumer perceptions of green food. Therefore, we used topic modelling and sentiment analysis to explore consumers' focus of attention, attitudinal preferences, and sentiment tendencies based on the review (n = 77,429) from JD.com. The findings revealed that (1) consumers' concerns about green-labelled rice are increasing rapidly, and most have a positive attitude; (2) consumers of green-labelled rice are more concerned about origin, aroma, and taste than conventional rice; (3) consumers of conventional rice are more concerned about the cost-performance ratio, while consumers of green-labelled rice are also price-sensitive; (4) green label mistrust and packaging breakage during logistics are the leading causes of negative emotions among consumers of green-labelled rice. This study provides a comparative analysis of consumer perceptions and emotions between the two types of rice, thus revealing the main influencing factors of the intention-behaviour gap and providing valuable consumer insights for the promotion of green consumption and the sustainable development of the green food industry.

9.
Acta Physiol (Oxf) ; 231(1): e13512, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32455507

RESUMO

AIM: Sodium retention is the hallmark of nephrotic syndrome (NS) and mediated by the proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases. Plasmin is highly abundant in nephrotic urine and has been proposed to be the principal serine protease responsible for ENaC activation in NS. However, a proof of the essential role of plasmin in experimental NS is lacking. METHODS: We used a genetic mouse model of NS based on an inducible podocin knockout (Bl6-Nphs2tm3.1Antc *Tg(Nphs1-rtTA*3G)8Jhm *Tg(tetO-cre)1Jaw or nphs2Δipod ). These mice were crossed with plasminogen deficient mice (Bl6-Plgtm1Jld or plg-/- ) to generate double knockout mice (nphs2Δipod *plg-/- ). NS was induced after oral doxycycline treatment for 14 days and mice were followed for subsequent 14 days. RESULTS: Uninduced nphs2Δipod *plg-/- mice had normal kidney function and sodium handling. After induction, proteinuria increased similarly in both nphs2Δipod *plg+/+ and nphs2Δipod *plg-/- mice. Western blot revealed the urinary excretion of plasminogen and plasmin in nphs2Δipod *plg+/+ mice which were absent in nphs2Δipod *plg-/- mice. After the onset of proteinuria, amiloride-sensitive natriuresis was increased compared to the uninduced state in both genotypes. Subsequently, urinary sodium excretion dropped in both genotypes leading to an increase in body weight and development of ascites. Treatment with the serine protease inhibitor aprotinin prevented sodium retention in both genotypes. CONCLUSIONS: This study shows that mice lacking urinary plasminogen are not protected from ENaC-mediated sodium retention in experimental NS. This points to an essential role of other urinary serine proteases in the absence of plasminogen.


Assuntos
Síndrome Nefrótica , Animais , Canais Epiteliais de Sódio/genética , Camundongos , Camundongos Knockout , Síndrome Nefrótica/genética , Plasminogênio , Sódio/metabolismo
10.
Acta Physiol (Oxf) ; 232(1): e13640, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650216

RESUMO

AIM: The serine protease prostasin (Prss8) is expressed in the distal tubule and stimulates proteolytic activation of the epithelial sodium channel (ENaC) in co-expression experiments in vitro. The aim of this study was to explore the role of prostasin in proteolytic ENaC activation in the kidney in vivo. METHODS: We used genetically modified knockin mice carrying a Prss8 mutation abolishing proteolytic activity (Prss8-S238A) or a mutation leading to a zymogen-locked state (Prss8-R44Q). Mice were challenged with low sodium diet and diuretics. Regulation of ENaC activity by Prss8-S238A and Prss8-R44Q was studied in vitro using the Xenopus laevis oocyte expression system. RESULTS: Co-expression of murine ENaC with Prss8-wt or Prss8-S238A in oocytes caused maximal proteolytic ENaC activation, whereas ENaC was activated only partially in oocytes co-expressing Prss8-R44Q. This was paralleled by a reduced proteolytic activity at the cell surface of Prss8-R44Q expressing oocytes. Sodium conservation under low sodium diet was preserved in Prss8-S238A and Prss8-R44Q mice but with higher plasma aldosterone concentrations in Prss8-R44Q mice. Treatment with the ENaC inhibitor triamterene over four days was tolerated in Prss8-wt and Prss8-S238A mice, whereas Prss8-R44Q mice developed salt wasting and severe weight loss associated with hyperkalemia and acidosis consistent with impaired ENaC function and renal failure. CONCLUSION: Unlike proteolytically inactive Prss8-S238A, zymogen-locked Prss8-R44Q produces incomplete proteolytic ENaC activation in vitro and causes a severe renal phenotype in mice treated with the ENaC inhibitor triamterene. This indicates that Prss8 plays a role in proteolytic ENaC activation and renal function independent of its proteolytic activity.


Assuntos
Precursores Enzimáticos , Canais Epiteliais de Sódio , Animais , Camundongos , Oócitos/metabolismo , Serina Endopeptidases/metabolismo , Triantereno , Xenopus laevis/metabolismo
11.
Dis Model Mech ; 14(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423816

RESUMO

Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg-/-) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


Assuntos
Histonas , Plasminogênio , Animais , DNA , Doxorrubicina/farmacologia , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Plasminogênio/genética , Plasminogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA