Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Biol Chem ; 295(18): 6151-6164, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32161114

RESUMO

S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.


Assuntos
Lipoilação , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/citologia , Sequência de Aminoácidos , Fenômenos Eletrofisiológicos , Gânglios Espinais/citologia , Células HEK293 , Humanos , Cinética , Canal de Sódio Disparado por Voltagem NAV1.6/química
2.
J Neurosci ; 39(8): 1539-1550, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30617209

RESUMO

Neuropathic pain is a significant public health challenge, yet the underlying mechanisms remain poorly understood. Painful small fiber neuropathy (SFN) may be caused by gain-of-function mutations in Nav1.8, a sodium channel subtype predominantly expressed in peripheral nociceptive neurons. However, it is not clear how Nav1.8 disease mutations induce sensory neuron hyperexcitability. Here we studied two mutations in Nav1.8 associated with hypersensitive sensory neurons: G1662S reported in painful SFN; and T790A, which underlies increased pain behaviors in the Possum transgenic mouse strain. We show that, in male DRG neurons, these mutations, which impair inactivation, significantly increase TTX-resistant resurgent sodium currents mediated by Nav1.8. The G1662S mutation doubled resurgent currents, and the T790A mutation increased them fourfold. These unusual currents are typically evoked during the repolarization phase of action potentials. We show that the T790A mutation greatly enhances DRG neuron excitability by reducing current threshold and increasing firing frequency. Interestingly, the mutation endows DRG neurons with multiple early afterdepolarizations and leads to substantial prolongation of action potential duration. In DRG neurons, siRNA knockdown of sodium channel ß4 subunits fails to significantly alter T790A current density but reduces TTX-resistant resurgent currents by 56%. Furthermore, DRG neurons expressing T790A channels exhibited reduced excitability with fewer early afterdepolarizations and narrower action potentials after ß4 knockdown. Together, our data demonstrate that open-channel block of TTX-resistant currents, enhanced by gain-of-function mutations in Nav1.8, can make major contributions to the hyperexcitability of nociceptive neurons, likely leading to altered sensory phenotypes including neuropathic pain in SFN.SIGNIFICANCE STATEMENT This work demonstrates that two disease mutations in the voltage-gated sodium channel Nav1.8 that induce nociceptor hyperexcitability increase resurgent currents. Nav1.8 is crucial for pain sensations. Because resurgent currents are evoked during action potential repolarization, they can be crucial regulators of action potential activity. Our data indicate that increased Nav1.8 resurgent currents in DRG neurons greatly prolong action potential duration and enhance repetitive firing. We propose that Nav1.8 open-channel block is a major factor in Nav1.8-associated pain mechanisms and that targeting the molecular mechanism underlying these unique resurgent currents represents a novel therapeutic target for the treatment of aberrant pain sensations.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Neuralgia/fisiopatologia , Nociceptividade/fisiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Sódio/metabolismo , Potenciais de Ação , Animais , Modelos Animais de Doenças , Mutação com Ganho de Função , Humanos , Ativação do Canal Iônico , Transporte de Íons , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neuralgia/etiologia , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/complicações , Mutação Puntual , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes , Células Receptoras Sensoriais/metabolismo , Tetrodotoxina/farmacologia
3.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899829

RESUMO

Detection technology of underwater pipeline leakage plays an important role in the subsea production system. In this paper, a new method based on the acoustic leak signal collected by a hydrophone is proposed to detect pipeline leakage in the subsea production system. Through the pipeline leakage test, it is found that the radiation noise is a continuous spectrum of the medium and high-frequency noise. Both the increase in pipe pressure and the diameter of the leak hole will narrow the spectral structure and shift the spectrum center towards the low frequencies. Under the same condition, the pipe pressure has a greater impact on the noise; every 0.05 MPa increase in the pressure, the radiation sound pressure level increases by 6-7 dB. The time-frequency images were obtained by processing the acoustic signals using the Ensemble Empirical Mode Decomposition (EEMD) and Hilbert-Huang transform (HHT), and fed into a two-layer Convolutional Neural Network (CNN) for leakage detection. The results show that CNN can correctly identify the degree of pipeline leakage. Hence, the proposed method provides a new approach for the detection of pipeline leakage in underwater engineering applications.

4.
Small ; 14(18): e1702945, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29226633

RESUMO

Integration of dual-barrel membrane patch-ion channel probes (MP-ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP-ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2+ -activated K+ channels to establish the generalizability of the methods. Next, the capability of the MP-ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof-of-principle experiment is performed and site-specific molecular/ionic flux sensing is demonstrated at single-ion-channel level, which show that the MP-ICP platform can be used to quantify local molecular/ionic concentrations.


Assuntos
Canais Iônicos/química , Microscopia/métodos , Transporte de Íons , Porosidade
5.
Pflugers Arch ; 469(2): 195-212, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27999940

RESUMO

Nav1.6 and Nav1.6-mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6-mediated resurgent currents by isoforms of fibroblast growth factor homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas FHF2B enhances resurgent currents. Overall, our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast, FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navß4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents, suggesting that specific regions within FHF2A and Navß4 have important regulatory functions. Our data also indicate that FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Isoformas de Proteínas/metabolismo , Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Ativação do Canal Iônico/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
6.
Stem Cells ; 34(6): 1553-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26996528

RESUMO

Human pluripotent stem cells (hPSCs), including both embryonic and induced pluripotent stem cells, possess the unique ability to readily differentiate into any cell type of the body, including cells of the retina. Although previous studies have demonstrated the ability to differentiate hPSCs to a retinal lineage, the ability to derive retinal ganglion cells (RGCs) from hPSCs has been complicated by the lack of specific markers with which to identify these cells from a pluripotent source. In the current study, the definitive identification of hPSC-derived RGCs was accomplished by their directed, stepwise differentiation through an enriched retinal progenitor intermediary, with resultant RGCs expressing a full complement of associated features and proper functional characteristics. These results served as the basis for the establishment of induced pluripotent stem cells (iPSCs) from a patient with a genetically inherited form of glaucoma, which results in damage and loss of RGCs. Patient-derived RGCs specifically exhibited a dramatic increase in apoptosis, similar to the targeted loss of RGCs in glaucoma, which was significantly rescued by the addition of candidate neuroprotective factors. Thus, the current study serves to establish a method by which to definitively acquire and identify RGCs from hPSCs and demonstrates the ability of hPSCs to serve as an effective in vitro model of disease progression. Moreover, iPSC-derived RGCs can be utilized for future drug screening approaches to identify targets for the treatment of glaucoma and other optic neuropathies. Stem Cells 2016;34:1553-1562.


Assuntos
Diferenciação Celular , Glaucoma/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Neural/patologia , Células Ganglionares da Retina/citologia , Linhagem Celular , Glaucoma/complicações , Humanos , Degeneração Neural/complicações , Doenças do Nervo Óptico/patologia , Fenótipo
7.
Faraday Discuss ; 193: 81-97, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711908

RESUMO

We describe dual-barrel ion channel probes (ICPs), which consist of an open barrel and a barrel with a membrane patch directly excised from a donor cell. When incorporated with scanning ion conductance microscopy (SICM), the open barrel (SICM barrel) serves to measure the distance-dependent ion current for non-invasive imaging and positioning of the probe in the same fashion of traditional SICM. The second barrel with the membrane patch supports ion channels of interest and was used to investigate ion channel activities. To demonstrate robust probe control with the dual-barrel ICP-SICM probe and verify that the two barrels are independently addressable, current-distance characteristics (approach curves) were obtained with the SICM barrel and simultaneous, current-time (I-T) traces were recorded with the ICP barrel. To study the influence that the distance between ligand-gated ion channels (i.e., large conductance Ca2+-activated K+ channels/BK channels) and the ligand source (i.e., Ca2+ source) has on channel activations, ion channel activities were recorded at two fixed probe-substrate distances (Dps) with the ICP barrel. The two fixed positions were determined from approach curves acquired with the SICM barrel. One position was defined as the "In-control" position, where the probe was in close proximity to the ligand source; the second position was defined as the "Far" position, where the probe was retracted far away from the ligand source. Our results confirm that channel activities increased dramatically with respect to both open channel probability and single channel current when the probe was near the ligand source, as opposed to when the probe was far away from the ligand source.

8.
Mol Pharmacol ; 86(2): 159-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24898004

RESUMO

Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais de Sódio/metabolismo , Toxinas Biológicas/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia
9.
J Biol Chem ; 288(34): 24316-31, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836888

RESUMO

Voltage-gated sodium channel (NaV) trafficking is incompletely understood. Post-translational modifications of NaVs and/or auxiliary subunits and protein-protein interactions have been posited as NaV-trafficking mechanisms. Here, we tested if modification of the axonal collapsin response mediator protein 2 (CRMP2) by a small ubiquitin-like modifier (SUMO) could affect NaV trafficking; CRMP2 alters the extent of NaV slow inactivation conferred by the anti-epileptic (R)-lacosamide, implying NaV-CRMP2 functional coupling. Expression of a CRMP2 SUMOylation-incompetent mutant (CRMP2-K374A) in neuronal model catecholamine A differentiated (CAD) cells did not alter lacosamide-induced NaV slow inactivation compared with CAD cells expressing wild type CRMP2. Like wild type CRMP2, CRMP2-K374A expressed robustly in CAD cells. Neurite outgrowth, a canonical CRMP2 function, was moderately reduced by the mutation but was still significantly higher than enhanced GFP-transfected cortical neurons. Notably, huwentoxin-IV-sensitive NaV1.7 currents, which predominate in CAD cells, were significantly reduced in CAD cells expressing CRMP2-K374A. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wild type CRMP2-expressing CAD cells decreased NaV1.7 currents. Consistent with a reduction in current density, biotinylation revealed a significant reduction in surface NaV1.7 levels in CAD cells expressing CRMP2-K374A; surface NaV1.7 expression was also decreased by SENP1 + SENP2 overexpression. Currents in HEK293 cells stably expressing NaV1.7 were reduced by CRMP2-K374A in a manner dependent on the E2-conjugating enzyme Ubc9. No decrement in current density was observed in HEK293 cells co-expressing CRMP2-K374A and NaV1.1 or NaV1.3. Diminution of sodium currents, largely NaV1.7, was recapitulated in sensory neurons expressing CRMP2-K374A. Our study elucidates a novel regulatory mechanism that utilizes CRMP2 SUMOylation to choreograph NaV1.7 trafficking.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Receptoras Sensoriais/metabolismo , Sumoilação/fisiologia , Substituição de Aminoácidos , Animais , Catecolaminas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Proteínas do Tecido Nervoso/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Células Receptoras Sensoriais/citologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Sumoilação/efeitos dos fármacos , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
10.
J Clin Invest ; 134(13)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722683

RESUMO

This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.


Assuntos
Dependovirus , Canal de Sódio Disparado por Voltagem NAV1.7 , Células Receptoras Sensoriais , Animais , Ratos , Dependovirus/genética , Células Receptoras Sensoriais/metabolismo , Masculino , Humanos , Feminino , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Gânglios Espinais/metabolismo , Ratos Sprague-Dawley , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/tratamento farmacológico , Analgesia
11.
Talanta ; 256: 124278, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681039

RESUMO

Spherical nucleic acid (SNA) conjugates consisting of gold cores functionalized with a densely packed DNA shells are of great significance in the field of medical detection and intracellular imaging. Especially, poly adenine (polyA)-mediated SNAs can improve the controllability and reproducibility of DNA assembly on the nanointerface, showing the tunable hybridization ability. However, due to the physics of single-site binding, the biosensor based on SNA usually exhibits a dynamic range spanning a fixed 81-fold change in target concentration, which limits its application in disease monitoring. To address this problem, we report a tri-block DNA-based approach to assemble SNA for nucleic acid detection based on structure-switching mechanism with programmable dynamic range. The tri-block DNA is a FAM-labeled stem-loop structure, which contains three blocks: polyA block as an anchoring block for tunable surface density, stem block with different GC base pair content for varying the structure stability, and the fixed loop block for target recognition. We find that varying the polyA block, the reaction temperature, and the GC base pair, SNA shows different target binding affinity and detection limit but with normally 81-fold dynamic range. We can extend the dynamic range to 1000-fold by using the combination of two SNAs with different affinity, and narrow the dynamic range to 5-fold by sequestration mechanism. Furthermore, the tunable SNA enables sensitive detection of mRNA in cells. Given its tunable dynamic range, such nanobiosensor based on SNA offers new possibility for various biomedical and clinical applications.


Assuntos
DNA , Nanopartículas Metálicas , Reprodutibilidade dos Testes , DNA/genética , DNA/química , Poli A/química , Hibridização de Ácido Nucleico , RNA Mensageiro , Ouro/química , Nanopartículas Metálicas/química
12.
J Physiol ; 590(20): 5123-39, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22826127

RESUMO

The deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.5 and alters action potential firing in heterologous expression systems (human embryonic kidney (HEK) 293 cells) and their native cardiomyocyte background. Cells expressing hNav1.5-F1486del exhibited a loss-of-function alteration, reflected by an 80% reduction of peak current density, and several gain-of-function alterations, including reduced channel inactivation, enlarged window current, substantial augmentation of persistent late sodium current and an increase in ramp current. We also observed substantial action potential duration (APD) prolongation and prominent early afterdepolarizations (EADs) in neonatal cardiomyocytes expressing the F1486del channels, as well as in computer simulations of myocyte activity. In addition, lidocaine sensitivity was dramatically reduced, which probably contributed to the poor therapeutic outcome observed in the patient carrying the hNav1.5-F1486del mutation. Therefore, despite the significant reduction in peak current density, the F1486del mutation also leads to substantial gain-of-function alterations that are sufficient to cause APD prolongation and EADs, the predominant characteristic of LQTs. These data demonstrate that hNav1.5 mutations can have complex functional consequences and highlight the importance of identifying the specific molecular defect when evaluating potential treatments for individuals with prolonged QT intervals.


Assuntos
Tolerância a Medicamentos/genética , Lidocaína/farmacologia , Síndrome do QT Longo/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Antiarrítmicos/farmacologia , Células HEK293 , Humanos , Técnicas In Vitro , Mutação , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
13.
J Biol Chem ; 286(31): 27301-10, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21659528

RESUMO

The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.


Assuntos
Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Venenos de Aranha/química , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Homologia de Sequência de Aminoácidos , Venenos de Aranha/genética , Venenos de Aranha/farmacologia , Aranhas
14.
FASEB J ; 25(9): 3177-85, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21665957

RESUMO

With conserved structural scaffold and divergent electrophysiological functions, animal toxins are considered powerful tools for investigating the basic structure-function relationship of voltage-gated sodium channels. Jingzhaotoxin-III (ß-TRTX-Cj1α) is a unique sodium channel gating modifier from the tarantula Chilobrachys jingzhao, because the toxin can selectively inhibit the activation of cardiac sodium channel but not neuronal subtypes. However, the molecular basis of JZTX-III interaction with sodium channels remains unknown. In this study, we showed that JZTX-III was efficiently expressed by the secretory pathway in yeast. Alanine-scanning analysis indicated that 2 acidic residues (Asp1, Glu3) and an exposed hydrophobic patch, formed by 4 Trp residues (residues 8, 9, 28 and 30), play important roles in the binding of JZTX-III to Nav1.5. JZTX-III docked to the Nav1.5 DIIS3-S4 linker. Mutations S799A, R800A, and L804A could additively reduce toxin sensitivity of Nav1.5. We also demonstrated that the unique Arg800, not emerging in other sodium channel subtypes, is responsible for JZTX-III selectively interacting with Nav1.5. The reverse mutation D816R in Nav1.7 greatly increased the sensitivity of the neuronal subtype to JZTX-III. Conversely, the mutation R800D in Nav1.5 decreased JZTX-III's IC50 by 72-fold. Therefore, our results indicated that JZTX-III is a site 4 toxin, but does not possess the same critical residues on sodium channels as other site 4 toxins. Our data also revealed the underlying mechanism for JZTX-III to be highly specific for the cardiac sodium channel.


Assuntos
Peptídeos/toxicidade , Canais de Sódio/metabolismo , Venenos de Aranha/toxicidade , Aranhas/fisiologia , Substituição de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/genética , Conformação Proteica , Canais de Sódio/genética , Venenos de Aranha/química , Venenos de Aranha/genética , Relação Estrutura-Atividade
15.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441593

RESUMO

Resurgent currents (INaR) produced by voltage-gated sodium channels are required for many neurons to maintain high-frequency firing and contribute to neuronal hyperexcitability and disease pathophysiology. Here, we show, for the first time, that INaR can be reconstituted in a heterologous system by coexpression of sodium channel α-subunits and A-type fibroblast growth factor homologous factors (FHFs). Specifically, A-type FHFs induces INaR from Nav1.8, Nav1.9 tetrodotoxin (TTX)-resistant neuronal channels, and, to a lesser extent, neuronal Nav1.7 and cardiac Nav1.5 channels. Moreover, we identified the N-terminus of FHF as the critical molecule responsible for A-type FHFs-mediated INaR. Among the FHFs, FHF4A is the most important isoform for mediating Nav1.8 and Nav1.9 INaR. In nociceptive sensory neurons, FHF4A knockdown significantly reduces INaR amplitude and the percentage of neurons that generate INaR, substantially suppressing excitability. Thus, our work reveals a novel molecular mechanism underlying TTX-resistant INaR generation and provides important potential targets for pain treatment.


Assuntos
Células Receptoras Sensoriais , Canais de Sódio Disparados por Voltagem , Potenciais de Ação/fisiologia , Gânglios Espinais/metabolismo , Isoformas de Proteínas/metabolismo , Células Receptoras Sensoriais/fisiologia , Tetrodotoxina/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Biomed Opt Express ; 13(6): 3535-3551, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781954

RESUMO

The Mueller matrix microscope is a powerful tool for characterizing the microstructural features of a complex biological sample. Performance of a Mueller matrix microscope usually relies on two major specifications: measurement accuracy and acquisition time, which may conflict with each other but both contribute to the complexity and expenses of the apparatus. In this paper, we report a learning-based method to improve both specifications of a Mueller matrix microscope using a rotating polarizer and a rotating waveplate polarization state generator. Low noise data from long acquisition time are used as the ground truth. A modified U-Net structured network incorporating channel attention effectively reduces the noise in lower quality Mueller matrix images obtained with much shorter acquisition time. The experimental results show that using high quality Mueller matrix data as ground truth, such a learning-based method can achieve both high measurement accuracy and short acquisition time in polarization imaging.

17.
Front Pharmacol ; 13: 846992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662692

RESUMO

Voltage-gated sodium channel NaV1.8 regulates transmission of pain signals to the brain. While NaV1.8 has the potential to serve as a drug target, the molecular mechanisms that shape NaV1.8 gating are not completely understood, particularly mechanisms that couple activation to inactivation. Interactions between toxin producing animals and their predators provide a novel approach for investigating NaV structure-function relationships. Arizona bark scorpions produce Na+ channel toxins that initiate pain signaling. However, in predatory grasshopper mice, toxins inhibit NaV1.8 currents and block pain signals. A screen of synthetic peptide toxins predicted from bark scorpion venom showed that peptide NaTx36 inhibited Na+ current recorded from a recombinant grasshopper mouse NaV1.8 channel (OtNaV1.8). Toxin NaTx36 hyperpolarized OtNaV1.8 activation, steady-state fast inactivation, and slow inactivation. Mutagenesis revealed that the first gating charge in the domain I (DI) S4 voltage sensor and an acidic amino acid (E) in the DII SS2 - S6 pore loop are critical for the inhibitory effects of NaTx36. Computational modeling showed that a DI S1 - S2 asparagine (N) stabilizes the NaTx36 - OtNaV1.8 complex while residues in the DI S3 - S4 linker and S4 voltage sensor form electrostatic interactions that allow a toxin glutamine (Q) to contact the first S4 gating charge. Surprisingly, the models predicted that NaTx36 contacts amino acids in the DII S5 - SS1 pore loop instead of the SS2 - S6 loop; the DII SS2 - S6 loop motif (QVSE) alters the conformation of the DII S5 - SS1 pore loop, enhancing allosteric interactions between toxin and the DII S5 - SS1 pore loop. Few toxins have been identified that modify NaV1.8 gating. Moreover, few toxins have been described that modify sodium channel gating via the DI S4 voltage sensor. Thus, NaTx36 and OtNaV1.8 provide tools for investigating the structure-activity relationship between channel activation and inactivation gating, and the connection to alternative pain phenotypes.

18.
Toxins (Basel) ; 13(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34357973

RESUMO

The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure-activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a "CXCE" motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizing the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Venenos de Escorpião/farmacologia , Escorpiões , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Arizona , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor , Peptídeos , Casca de Planta , Proteômica , Escorpiões/metabolismo
19.
Mol Pharmacol ; 78(6): 1124-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855463

RESUMO

The voltage-gated sodium channel Na(v)1.7 plays a crucial role in pain, and drugs that inhibit hNa(v)1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNa(v)1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both ProTx-II and HWTX-IV have been proposed to preferentially block hNa(v)1.7 activation by trapping the domain II voltage-sensor in the resting configuration, we show that specific residues in the voltage-sensor paddle of domain II play substantially different roles in determining the affinities of these toxins to hNa(v)1.7. The mutation E818C increases ProTx-II's and HWTX-IV's IC(50) for block of hNa(v)1.7 currents by 4- and 400-fold, respectively. In contrast, the mutation F813G decreases ProTx-II affinity by 9-fold but has no effect on HWTX-IV affinity. It is noteworthy that we also show that ProTx-II, but not HWTX-IV, preferentially interacts with hNa(v)1.7 to impede fast inactivation by trapping the domain IV voltage-sensor in the resting configuration. Mutations E1589Q and T1590K in domain IV each decreased ProTx-II's IC(50) for impairment of fast inactivation by ~6-fold. In contrast mutations D1586A and F1592A in domain-IV increased ProTx-II's IC(50) for impairment of fast inactivation by ~4-fold. Our results show that whereas ProTx-II and HWTX-IV binding determinants on domain-II may overlap, domain II plays a much more crucial role for HWTX-IV, and contrary to what has been proposed to be a guiding principle of sodium channel pharmacology, molecules do not have to exclusively target the domain IV voltage-sensor to influence sodium channel inactivation.


Assuntos
Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.7 , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/farmacologia , Aranhas
20.
Invest Ophthalmol Vis Sci ; 60(6): 1928-1936, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042800

RESUMO

Purpose: Diabetes leads to the downregulation of the retinal Kir4.1 channels and Müller cell dysfunction. The insulin receptor substrate-1 (IRS-1) is a critical regulator of insulin signaling in Müller cells. Circadian rhythms play an integral role in normal physiology; however, diabetes leads to a circadian dysrhythmia. We hypothesize that diabetes will result in a circadian dysrhythmia of IRS-1 and Kir4.1 and disturbed clock gene function will have a critical role in regulating Kir4.1 channels. Methods: We assessed a diurnal rhythm of retinal IRS-1 and Kir4.1 in db/db mice. The Kir4.1 function was evaluated using a whole-cell recording of Müller cells. The rat Müller cells (rMC-1) were used to undertake in vitro studies using a siRNA. Results: The IRS-1 exhibited a diurnal rhythm in control mice; however, with diabetes, this natural rhythm was lost. The Kir4.1 levels peaked and troughed at times similar to the IRS-1 rhythm. The IRS-1 silencing in the rMC-1 led to a decrease in Kir4.1 and BMAL1. The insulin treatment of retinal explants upregulated Kir4.1 possibly via upregulation of BMAL1 and phosphorylation of IRS-1 and Akt-1. Conclusions: Our studies highlight that IRS-1, by regulating BMAL1, is an important regulator of Kir4.1 in Müller cells and the dysfunctional signaling mediated by IRS-1 may be detrimental to Kir4.1.


Assuntos
Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/fisiologia , Retinopatia Diabética/genética , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Proteínas Substratos do Receptor de Insulina/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Fatores de Transcrição ARNTL/biossíntese , Animais , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Humanos , Proteínas Substratos do Receptor de Insulina/biossíntese , Camundongos , Reação em Cadeia da Polimerase , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , RNA/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA