Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hepatology ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015993

RESUMO

BACKGROUND AND AIMS: Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS: By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS: Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.

2.
EMBO Rep ; 21(10): e49689, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32790025

RESUMO

Cancer stem cells (CSCs) are cancer-initiating cells that are not only a source of tumorigenesis but also the cause of tumour progression, metastasis and therapy resistance. EBV-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer with unique clinicopathological and molecular features. However, whether CSCs exist in EBVaGC, and the tumorigenic mechanism of EBV, remains unclear. Here, NOD/SCID mice were injected subcutaneously with the EBVaGC cell line SNU719 and treated with 5-fluorouracil weekly. Successive generations of xenografts yielded a highly malignant EBVaGC cell line, SNU-4th, which displays properties of CSCs and mainly consists of CD44+ CD24- cells. In SNU-4th cells, an EBV-encoded circRNA, ebv-circLMP2A, expression increased and plays crucial roles in inducing and maintaining stemness phenotypes through targeting miR-3908/TRIM59/p53 axis. Additionally, high expression of ebv-circLMP2A is significantly associated with metastasis and poor prognosis in patients with EBVaGC. These findings not only provide evidence for the existence of CSCs in EBVaGC and elucidate the pathogenic mechanism of ebv-circLMP2A in EBVaGC, but also provide a promising therapeutic target for EBVaGC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Animais , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Circular , Neoplasias Gástricas/genética , Proteínas com Motivo Tripartido
3.
Exp Cell Res ; 400(2): 112492, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529710

RESUMO

DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.


Assuntos
Adenina/análogos & derivados , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Diferenciação Celular , Epigênese Genética , Desenvolvimento Muscular , Músculo Esquelético/patologia , Mioblastos/patologia , Adenina/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Animais , Metilação de DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
4.
BMC Pregnancy Childbirth ; 22(1): 483, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698093

RESUMO

PURPOSE: To explore changes in telomere length (TL) and mitochondrial copy number (mtDNA-CN) in preeclampsia (PE) and to evaluate the combined effect of maternal TL and mtDNA-CN on PE risk. METHODS: A case-control study of 471 subjects (130 PE cases and 341 age frequency matched controls with gestational age rank from 24 to 42 weeks) was conducted in Nanjing Drum Tower Hospital, Jiangsu Province of China. Relative telomere length (RTL) and mtDNA-CN were measured using quantitative polymerase chain reaction (qPCR), and PE risk was compared between groups by logistic regression analyses. RESULTS: PE patients displayed longer RTL (0.48 versus 0.30) and higher mtDNA-CN (3.02 versus 2.00) in maternal blood as well as longer RTL (0.61 versus 0.35) but lower mtDNA-CN (1.69 versus 5.49) in cord blood (all p < 0.001). Exercise during pregnancy exerted an obvious effect of maternal telomere length prolongation. Multiparous women with folic acid intake during early pregnancy and those who delivered vaginally showed longer telomere length, while those factors imposed no or opposite effect on RTL in PE cases. Furthermore, RTL and mtDNA-CN were positively correlated in controls (in maternal blood r = 0.18, p < 0.01; in cord blood r = 0.19, p < 0.001), but this correlation was disrupted in PE patients in both maternal blood and cord blood. Longer maternal RTL and higher mtDNA-CN were associated with a higher risk of PE, and the ROC curve of RTL and mtDNA-CN for predicting PE risk presented an AUC of 0.755 (95% CI: 0.698-0.812). CONCLUSIONS: The interaction of TL and mtDNA-CN may play an important role in the pathogenesis of PE and could be a potential biomarker of PE risk.


Assuntos
DNA Mitocondrial , Pré-Eclâmpsia , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Período Periparto , Pré-Eclâmpsia/genética , Gravidez , Telômero
5.
Nucleic Acids Res ; 48(22): 12618-12631, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33275145

RESUMO

The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B-G039927 and EPS15L1-lncOR7C2-1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.


Assuntos
Carcinogênese/genética , Fusão Gênica/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Variações do Número de Cópias de DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/patologia , RNA Mensageiro/genética
6.
Biochem Biophys Res Commun ; 552: 52-58, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740664

RESUMO

METTL3 increasing the mature miRNA levels via N6-Methyladenosine (m6A) modification of primary miRNA (pri-miRNA) transcripts has emerged as an important post-transcriptional regulation of miRNA biogenesis. Our previous studies and others have showed that muscle specific miRNAs are essential for skeletal muscle differentiation. Whether these miRNAs are also regulated by METTL3 is still unclear. Here, we found that m6A motifs were present around most of these miRNAs, which were indeed m6A modified as confirmed by m6A-modified RNA immunoprecipitation (m6A RIP). However, we surprisingly found that these muscle specific miRNAs were repressed instead of increased by METTL3 in C2C12 in vitro differentiation and mouse skeletal muscle regeneration after injury in vivo model. To elucidate the underlined mechanism, we performed reporter assays in 293T cells and validated METTL3 increasing these miRNAs at post-transcriptional level as expected. Furthermore, in myogenic C2C12 cells, we found that METTL3 not only repressed the expression of myogenic transcription factors (TFs) which can enhance the muscle specific miRNAs, but also increased the expression of epigenetic regulators which can repress these miRNAs. Thus, METTL3 could repress the muscle specific miRNAs at transcriptional level indirectly. Taken together, our results demonstrated that skeletal muscle specific miRNAs were repressed by METTL3 and such repression is likely synthesized transcriptional and post-transcriptional regulations.


Assuntos
Metiltransferases/genética , MicroRNAs/genética , Músculo Esquelético/metabolismo , Processamento Pós-Transcricional do RNA/genética , Ativação Transcricional/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Humanos , Masculino , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Proc Natl Acad Sci U S A ; 114(12): 3192-3197, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28275095

RESUMO

The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.


Assuntos
Estresse do Retículo Endoplasmático , Redes Reguladoras de Genes , Estresse Fisiológico , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Fator 3 Ativador da Transcrição/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Metabolismo Energético , Regulação da Expressão Gênica , Glucose/metabolismo , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/genética , Proteínas Supressoras de Tumor/genética , Tunicamicina/farmacologia , Ubiquitina Tiolesterase/genética , Resposta a Proteínas não Dobradas
8.
BMC Cancer ; 19(1): 144, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760245

RESUMO

BACKGROUND: Previous related studies have mainly focused on renal cell carcinoma (RCC) with venous tumor thrombus, specifically inferior vena cava tumor thrombus with renal vein tumor thrombus (RVTT). However, only a few studies have focused on postoperative long-term survival of RCC patients exclusively with RVTT. Our aim was to investigate the independent prognostic factors for locally advanced RCC with RVTT in China. METHODS: Patients with locally advanced RCC with RVTT were enrolled for the study from January 2000 to December 2015. All patients underwent radical nephrectomy. Survival analysis was estimated using Kaplan-Meier. Univariable and multivariable survival analyses were performed using COX. Patients were divided into high-risk, middle-risk, and low-risk groups based on independent prognostic factors and then analyzed for survival. RESULTS: One hundred twenty-eight consecutive patients (103 men & 25 women) were enrolled with a median age of 61 years. Thrombi were all graded 0 using the Mayo system, of which 23 were friable. None of the thrombi detached during surgery. 121 patients were successfully followed up, with a median follow-up period of 47 months. Median overall survival was 127 months (95%CI: 101-153). The 5-year and 10-year cancer-specific survival (CSS) rate was 67.9 and 57.0%. 59 patients had recurrence with median time of 40 months. Friable thrombus, paraneoplastic syndrome (PNS), modified Fuhrman grade 3/4 and perirenal fat invasion were independent prognostic factors (p < 0.05). The 5-year CSS for the Low-risk group (no factors) was 100%, Middle-risk group (1-2 factors) was 68.6%, while the High-risk group (3-4 factors) was 0%. CONCLUSIONS: After radical surgery, RCC patients with RVTT had a relatively fair prognosis except for patients with friable thrombus, PNS, higher modified Fuhrman grade and perirenal fat invasion.


Assuntos
Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Veias Renais/patologia , Carcinoma de Células Renais/mortalidade , China , Feminino , Humanos , Neoplasias Renais/mortalidade , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia , Nefrectomia , Prognóstico , Risco , Análise de Sobrevida , Trombose
9.
Bioessays ; 38(10): 991-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27550823

RESUMO

Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism.


Assuntos
Neoplasias/metabolismo , RNA Longo não Codificante , Animais , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/genética , Transdução de Sinais
10.
RNA ; 20(9): 1376-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002674

RESUMO

Coordinated assembly of the ribosome is essential for proper translational activity in eukaryotic cells. It is therefore critical to coordinate the expression of components of ribosomal programs with the cell's nutritional status. However, coordinating expression of these components is poorly understood. Here, by combining experimental and computational approaches, we systematically identified box C/D snoRNAs in four fission yeasts and found that the expression of box C/D snoRNA and ribosomal protein (RP) genes were orchestrated by a common Homol-D box, thereby ensuring a constant balance of these two genetic components. Interestingly, such transcriptional coregulations could be observed in most Ascomycota species and were mediated by different cis-regulatory elements. Via the reservation of cis elements, changes in spatial configuration, the substitution of cis elements, and gain or loss of cis elements, the regulatory networks of box C/D snoRNAs evolved to correspond with those of the RP genes, maintaining transcriptional coregulation between box C/D snoRNAs and RP genes. Our results indicate that coregulation via common cis elements is an important mechanism to coordinate expression of the RP and snoRNA genes, which ensures a constant balance of these two components.


Assuntos
Ascomicetos/genética , Sequência Conservada , Especiação Genética , RNA Nucleolar Pequeno/genética , Proteínas Ribossômicas/genética , Sequência de Bases , Biologia Computacional , Regulação da Expressão Gênica , Variação Genética , Genoma Fúngico , RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/metabolismo , Schizosaccharomyces/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Nucleic Acids Res ; 41(1): e5, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22941648

RESUMO

Understanding the transcriptional regulation of microRNAs (miRNAs) is extremely important for determining the specific roles they play in signaling cascades. However, precise identification of transcription factor binding sites (TFBSs) orchestrating the expressions of miRNAs remains a challenge. By combining accessible chromatin sequences of 12 cell types released by the ENCODE Project, we found that a significant fraction (~80%) of such integrated sequences, evolutionary conserved and in regions upstream of human miRNA genes that are independently transcribed, were preserved across cell types. Accordingly, we developed a computational method, Accessible and Conserved TFBSs Locater (ACTLocater), incorporating this chromatin feature and evolutionary conservation to identify the TFBSs associated with human miRNA genes. ACTLocater achieved high positive predictive values, as revealed by the experimental validation of FOXA1 predictions and by the comparison of its predictions of some other transcription factors (TFs) to empirical ChIP-seq data. Most notably, ACTLocater was widely applicable as indicated by the successful prediction of TF → miRNA interactions in cell types whose chromatin accessibility profiles were not incorporated. By applying ACTLocater to TFs with characterized binding specificities, we compiled a novel repository of putative TF → miRNA interactions and displayed it in ACTViewer, providing a promising foundation for future investigations to elucidate the regulatory mechanisms of miRNA transcription in humans.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , MicroRNAs/genética , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Linhagem Celular , Cromatina/química , Evolução Molecular , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos
12.
Genes Dis ; 10(6): 2491-2510, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37554208

RESUMO

Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in various biological processes across several species. Though many efforts have been devoted to the expansion of the lncRNAs landscape, much about lncRNAs is still unknown due to their great complexity. The development of high-throughput technologies and the constantly improved bioinformatic methods have resulted in a rapid expansion of lncRNA research and relevant databases. In this review, we introduced genome-wide research of lncRNAs in three parts: (i) novel lncRNA identification by high-throughput sequencing and computational pipelines; (ii) functional characterization of lncRNAs by expression atlas profiling, genome-scale screening, and the research of cancer-related lncRNAs; (iii) mechanism research by large-scale experimental technologies and computational analysis. Besides, primary experimental methods and bioinformatic pipelines related to these three parts are summarized. This review aimed to provide a comprehensive and systemic overview of lncRNA genome-wide research strategies and indicate a genome-wide lncRNA research system.

13.
J Exp Clin Cancer Res ; 42(1): 194, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542342

RESUMO

BACKGROUND: RNA binding proteins (RBPs)-regulated gene expression play a vital role in various pathological processes, including the progression of cancer. However, the role of RBP in hepatocellular carcinoma (HCC) remains much unknown. In this study, we aimed to explore the contribution of RBP CCDC137 in HCC development. METHODS: We analyzed the altered expression level and clinical significance of CCDC137 in database and HCC specimens. In vitro cell assays and in vivo spontaneous mouse models were used to assess the function of CCDC137. Finally, the molecular mechanisms of how CCDC137 regulates gene expression and promotes HCC was explored. RESULTS: CCDC137 is aberrantly upregulated in HCC and correlates with poor clinical outcomes in HCC patients. CCDC137 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, CCDC137 binds with FOXM1, JTV1, LASP1 and FLOT2 mRNAs, which was revealed by APOBEC1-mediated profiling, to increase their cytoplasmic localization and thus enhance their protein expressions. Upregulation of FOXM1, JTV1, LASP1 and FLOT2 subsequently synergistically activate AKT signaling and promote HCC. Interestingly, we found that CCDC137 binds with the microprocessor protein DGCR8 and DGCR8 has a novel non-canonical function in mRNA subcellular localization, which mediates the cytoplasmic distribution of mRNAs regulated by CCDC137. CONCLUSIONS: Our results identify a critical proliferation-related role of CCDC137 and reveal a novel CCDC137/DGCR8/mRNA localization/AKT axis in HCC progression, which provide a potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Adv Sci (Weinh) ; 10(23): e2301983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271897

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive and fatal disease caused by a subset of cancer stem cells (CSCs). It is estimated that there are approximately 100 000 long noncoding RNAs (lncRNAs) in humans. However, the mechanisms by which lncRNAs affect tumor stemness remain poorly understood. In the present study, it is found that DIO3OS is a conserved lncRNA that is generally downregulated in multiple cancers, including HCC, and its low expression correlates with poor clinical outcomes in HCC. In in vitro cancer cell lines and an in vivo spontaneous HCC mouse model, DIO3OS markedly represses tumor development via its suppressive role in CSCs through downregulation of zinc finger E-box binding homeobox 1 (ZEB1). Interestingly, DIO3OS represses ZEB1 post-transcriptionally without affecting its mRNA levels. Subsequent experiments show that DIO3OS interacts with the NONO protein and restricts NONO-mediated nuclear export of ZEB1 mRNA. Overall, these findings demonstrate that the DIO3OS-NONO-ZEB1 axis restricts HCC development and offers a valuable candidate for CSC-targeted therapeutics for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
Int J Biol Sci ; 18(8): 3223-3236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637959

RESUMO

The cell cycle machinery controls cell proliferation and the dysregulation of the cell cycle lies at the heart of carcinogenesis. Thus, exploring the unknown regulators involved in the cell cycle not only contribute to better understanding of cell proliferation but also provide substantial improvement to cancer therapy. In this study, we identified that the expression of methyltransferase METTL3 was upregulated in the M phase. Overexpression of METTL3 facilitated cell cycle progression, induced cell proliferation in vitro and enhanced tumorigenicity in vivo, while knockdown of METTL3 reversed these processes. METTL3 induced CDC25B mRNA m6A modification in the M phase, which accelerated the translation of CDC25B mRNA through YTHDF1-dependent m6A modification. Clinical data analysis showed that METTL3 and CDC25B were highly expressed in cervical cancer. Our work reveals that a new mechanism regulates cell cycle progression through the METTL3/m6A/CDC25B pathway, which provides insight into the critical roles of m6A methylation in the cell cycle.


Assuntos
Metiltransferases , Divisão Celular , Proliferação de Células/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo
16.
BMC Med Genomics ; 15(Suppl 2): 104, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513884

RESUMO

BACKGROUND: Non-invasive, especially the urine-based diagnosis of prostate cancer (PCa) remains challenging. Although prostate cancer antigen (PSA) is widely used in prostate cancer screening, the false positives may result in unnecessary invasive procedures. PSA elevated patients are triaged to further evaluation of free/total PSA ratio (f/t PSA), to find out potential clinically significant PCa before undergoing invasive procedures. Genomic instability, especially chromosomal copy number variations (CNVs) were proved much more tumor specific. Here we performed a prospective study to evaluate the diagnostic value of CNV via urine-exfoliated cell DNA analysis in PCa. METHODS: We enrolled 28 PSA elevated patients (≥ 4 ng/ml), including 16 PCa, 9 benign prostate hypertrophy (BPH) and 3 prostatic intraepithelial neoplasia (PIN). Fresh initial portion urine was collected after hospital admission. Urine exfoliated cell DNA was analyzed by low coverage Whole Genome Sequencing, followed by CNV genotyping by the prostate cancer chromosomal aneuploidy detector (ProCAD). CNVs were quantified in absolute z-score (|Z|). Serum free/total PSA ratio (f/t PSA) was reported altogether. RESULTS: In patients with PCa, the most frequent CNV events were chr3q gain (n = 2), chr8q gain (n = 2), chr2q loss (n = 4), and chr18q loss (n = 3). CNVs were found in 81.2% (95% Confidence Interval (CI) 53.7-95.0%) PCa. No CNV was identified in BPH patients. A diagnosis model was established by incorporating all CNVs. At the optimal cutoff of |Z|≥ 2.50, the model reached an AUC of 0.91 (95% CI 0.83-0.99), a sensitivity of 81.2% and a specificity of 100%. The CNV approach significantly outperformed f/t PSA (AUC = 0.62, P = 0.012). Further analyses showed that the CNV positive rate was significantly correlated with tumor grade. CNVs were found in 90.9% (95% CI 57.1-99.5%) high grade tumors and 60.0% (95% CI 17.0-92.7%) low grade tumors. No statistical significance was found for patient age, BMI, disease history and family history. CONCLUSIONS: Urine exfoliated cells harbor enriched CNV features in PCa patients. Urine detection of CNV might be a biomarker for PCa diagnosis, especially in terms of the clinically significant high-grade tumors.


Assuntos
Adenocarcinoma , Hiperplasia Prostática , Neoplasias da Próstata , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Variações do Número de Cópias de DNA , Detecção Precoce de Câncer , Humanos , Masculino , Estudos Prospectivos , Próstata/patologia , Antígeno Prostático Específico/genética , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sequenciamento Completo do Genoma
17.
Autophagy ; 18(4): 860-876, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34382907

RESUMO

Lipid accumulation often leads to lipotoxic injuries to hepatocytes, which can cause nonalcoholic steatohepatitis. The association of inflammation with lipid accumulation in liver tissue has been studied for decades; however, key mechanisms have been identified only recently. In particular, it is still unknown how hepatic inflammation regulates lipid metabolism in hepatocytes. Herein, we found that PA treatment or direct stimulation of STING1 promoted, whereas STING1 deficiency impaired, MTORC1 activation, suggesting that STING1 is involved in PA-induced MTORC1 activation. Mechanistic studies revealed that STING1 interacted with several components of the MTORC1 complex and played an important role in the complex formation of MTORC1 under PA treatment. The involvement of STING1 in MTORC1 activation was dependent on SQSTM1, a key regulator of the MTORC1 pathway. In SQSTM1-deficient cells, the interaction of STING1 with the components of MTORC1 was weak. Furthermore, the impaired activity of MTORC1 via rapamycin treatment or STING1 deficiency decreased the numbers of LDs in cells. PA treatment inhibited lipophagy, which was not observed in STING1-deficient cells or rapamycin-treated cells. Restoration of MTORC1 activity via treatment with amino acids blocked lipophagy and LDs degradation. Finally, increased MTORC1 activation concomitant with STING1 activation was observed in liver tissues of nonalcoholic fatty liver disease patients, which provided clinical evidence for the involvement of STING1 in MTORC1 activation. In summary, we identified a novel regulatory loop of STING1-MTORC1 and explain how hepatic inflammation regulates lipid accumulation. Our findings may facilitate the development of new strategies for clinical treatment of hepatic steatosis.Abbreviations: AA: amino acid; ACTB: actin beta; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; DEPTOR: DEP domain containing MTOR interacting protein; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FFAs: free fatty acids; GFP: green fluorescent protein; HFD: high-fat diet; HT-DNA: herring testis DNA; IL1B: interleukin 1 beta; LAMP1: lysosomal associated membrane protein 1; LDs: lipid droplets; MAP1LC3: microtubule associated protein 1 light chain 3; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MLST8: MTOR associated protein, LST8 homolog; MT-ND1: mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFL: nonalcoholic fatty liver; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NPCs: non-parenchymal cells; PA: palmitic acid; PLIN2: perilipin 2; RD: regular diet; RELA: RELA proto-oncogene, NF-kB subunit; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; RRAGA: Ras related GTP binding A; RRAGC: Ras related GTP binding C; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGs: triglycerides; TREX1: three prime repair exonuclease 1.


Assuntos
Autofagia , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia/fisiologia , Fibroblastos/metabolismo , Guanosina Trifosfato , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Sirolimo
18.
Hepatology ; 52(4): 1431-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20842632

RESUMO

UNLABELLED: MicroRNA-122 (miR-122) is a liver-specific microRNA whose expression is specifically turned on in the mouse liver during embryogenesis, thus it is expected to be involved in liver development. However, the role of miR-122 in liver development and its potential underlying mechanism remain unclear. Here, we show that the expression of miR-122 is closely correlated with four liver-enriched transcription factors (LETFs)-hepatocyte nuclear factor (HNF) 1α, HNF3ß, HNF4α, and CCAAT/enhancer-binding protein (C/EBP) α-in the livers of developing mouse embryos and in human hepatocellular carcinoma (HCC) cell lines. Correspondingly, promoter analysis revealed that these LETFs are coordinately involved in the transcriptional regulation of miR-122, and three HNFs directly bind to the miR-122 promoter as transcriptional activators. Using a luciferase reporter system, we identified a group of miR-122 targets involved in proliferation and differentiation regulation. Among these targets, the most prominently repressed target was CUTL1, a transcriptional repressor of genes specifying terminal differentiation in multiple cell lineages, including hepatocytes. We show that CUTL1 expression is gradually silenced at the posttranscriptional level during mouse liver development. Overexpression and knockdown studies both showed that miR-122 repressed CUTL1 protein expression in HCC cell lines. Finally, we show that the stable restoration of miR-122 in HepG2 cells suppresses cellular proliferation and activates the expression of three hepatocyte functional genes, including the cholesterol-7α hydroxylase gene (CYP7A1), a known target of CUTL1 in hepatocytes. CONCLUSION: Our study provides a model in which miR-122 functions as an effector of LETFs and contributes to liver development by regulating the balance between proliferation and differentiation of hepatocytes, at least by targeting CUTL1.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Fígado/embriologia , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fatores de Transcrição
19.
Sci China Life Sci ; 64(10): 1612-1623, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33521860

RESUMO

Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of miR-101a/b, a pair of non-muscle-specific miRNAs that show the largest change among a group of transiently upregulated miRNAs during myogenesis in C2C12 cells. The overexpression of miR-101a/b inhibits myoblast differentiation by suppressing the p38/MAPK, Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2a, a key protein in the p38/MAPK pathway, was identified as a direct target of miR-101a/b. Interestingly, we found that the long non-coding RNA (lncRNA) Malat1, which promotes muscle differentiation, interacts with miR-101a/b, and this interaction competes with Mef2a mRNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a "braking" role in differentiation of transiently upregulated miRNAs and provided new insights into the competing endogenous RNA (ceRNA) regulatory mechanism in myoblast differentiation and myogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Desenvolvimento Muscular/genética , Animais , Diferenciação Celular , Linhagem Celular , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição MEF2/genética , Camundongos , Mioblastos/citologia , RNA Longo não Codificante/genética , Regulação para Cima
20.
Mol Immunol ; 129: 45-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278678

RESUMO

Type I interferons (IFNs) play a central role in host defense against viral infection. Multiple posttranslational modifications including ubiquitination and deubiquitination regulate the function of diverse molecules in type I IFN signaling. Many ubiquitin ligase enzymes, such as those of the TRAF and TRIM families, have been shown to participate in the production of type I IFNs and inflammatory cytokines. However, the function of deubiquitinating enzymes (DUBs), a protein family that counteracts the action of protein ubiquitination, on the regulation of antiviral immune responses is not well understood. In this study, we used the broad-spectrum DUB inhibitor G5 to reveal their function in antiviral signaling, and then systematically analyzed mRNA expression of the DUB genes upon poly (I:C) treatment in THP-1 cells. Based on this analysis, we cloned some DUB genes whose expression changed and determined their function in antiviral signaling. Taken together, we present a comprehensive DUB gene expression analysis in THP-1 cells, and suggest the involvement of this family of proteins in the regulation of host antiviral activities.


Assuntos
Antivirais/farmacologia , Enzimas Desubiquitinantes/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Poli I-C/farmacologia , Transdução de Sinais/genética , Linhagem Celular , Citocinas/genética , Células HEK293 , Humanos , Imunidade/efeitos dos fármacos , Imunidade/genética , Interferon Tipo I/genética , Piranos/farmacologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Células THP-1 , Ubiquitina/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA