Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inorg Chem ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912873

RESUMO

New diruthenium complexes based on the scaffold Ru2Cp2(CO)2 (Cp = η5-C5H5) and containing a bridging vinyliminium ligand, [2a-d]CF3SO3, were synthesized through regioselective coupling of alkynes with an aminocarbyne precursor (85-90% yields). The reaction involving phenylacetylene proceeded with the formation of a diruthenacyclobutene byproduct, [4]CF3SO3 (10% yield). Complexes [2a-d]+ undergo partial alkyne extrusion in contact with alumina or CDCl3. All products were characterized by elemental analysis, infrared and multinuclear NMR spectroscopy, and single crystal X-ray diffraction in two cases. Complexes [2a-d]+ revealed an outstanding stability in DMEM cell culture medium at 37 °C (<1% degradation over 72 h). These complexes exhibited cytotoxicity in human colon colorectal adenocarcinoma HT-29 cells in the low micromolar range, with lower IC50 values than those obtained with the homologous diiron complexes previously reported. Evaluation of ROS (reactive oxygen species) production and O2 consumption rate (OCR) highlighted the higher potential of Ru2 complexes, compared to the Fe2 counterparts, to impact mitochondrial activity, with the heterometallic Ru2-ferrocenyl complex [2d]+ showing the best performance.

2.
Environ Sci Technol ; 54(16): 9834-9843, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32677824

RESUMO

Ammonium is one of the dominant inorganic water-soluble ions in fine particulate matter (PM2.5). In this study, source apportionment and thermodynamic equilibrium models were used to analyze the relationship between pH and the partitioning of ammonium (ε(NH4+)) using hourly ambient samples collected from Tianjin, China. We found a "Reversed-S curve" between pH and ε(NH4+) from the ambient hourly aerosol dataset when the theoretical ε(NO3-)* (an index identified in this work) was within specific ranges. A Boltzmann function was then used to fit the Reversed-S curve. For the summer data set, when ε(NO3-)* was between 0.7 and 0.8, the fitted R2 was 0.88. Through thermodynamic analysis, we found that the values of k[H+]2 (k = 3.08 × 104 L2 mol-2) and ε(NO3-)* can influence the pH-ε(NH4+) curve. Under certain situations, the values of k[H+]2 and ε(NO3-)* are similar to each other, and ε(NH4+) is sensitive to pH, suggesting that ε(NO3-)* plays an important role in affecting the ε(NH4+). During summer, winter, and spring seasons, when the relative humidity was greater than 0.36 and ε(NO3-)* was between 0.8 and 0.95, there was an obvious Reversed-S curve, with R2 = 0.60. The theoretical k[H+]2 and ε(NO3-)* developed in this work can be used to analyze the gas-particle partitioning of ammonia-ammonium and nitrate-nitric acid in the ambient atmosphere. Also, it is the first time that we created the joint source-NH3/HNO3 maps to integrate sources, aerosol pH and liquid water content, and ions (altogether in one map), which can provide useful information for designing effective strategies to control particulate matter pollution.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
3.
J Environ Sci (China) ; 95: 121-129, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653171

RESUMO

Volatile organic compounds (VOCs) as precursors of ozone and secondary organic aerosols can cause adverse effects on the environment and human health. However, knowledge of the VOC vertical profile in the lower troposphere of major Chinese cities is poorly understood. In this study, tethered balloon flights were conducted over the juncture of Beijing-Tianjin-Hebei in China during the winter of 2016. Thirty-six vertical air samples were collected on selected heavy and light pollution days at altitudes of 50-1000 meters above ground level. On average, the concentration of total VOCs (TVOCs) at 50-100 m was 4.9 times higher than at 900-1000 m (46.9 ppbV vs. 8.0 ppbV). TVOC concentrations changed rapidly from altitudes of 50-100 to 401-500 m, with an average decrease of 72%. With further altitude increase, the TVOC concentration gradually decreased. The xylene/benzene ratios of 34/36 air samples were lower than 1.1, and the benzene/toluene ratios of 34/36 samples were higher than 0.4, indicating the occurrence of aged air mass during the sampling period. Alkenes contributed most in terms of both OH loss rate (39%-71%) and ozone formation potential (40%-72%), followed by aromatics (6%-38%). Finally, the main factors affecting the vertical distributions of VOCs were local source emission and negative dispersion conditions on polluted days. These data could advance our scientific understanding of VOC vertical distribution.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Pequim , China , Cidades , Monitoramento Ambiental , Humanos
4.
Environ Sci Technol ; 53(6): 3048-3057, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30793889

RESUMO

Nitrate is one of the most abundant inorganic water-soluble ions in fine particulate matter (PM2.5). However, the formation mechanism of nitrate in the ambient atmosphere, especially the impacts of its semivolatility and the various existing forms of nitrogen, remain under-investigated. In this study, hourly ambient observations of speciated PM2.5 components (NO3-, SO42-, etc.) were collected in Tianjin, China. Source contributions were analyzed by PMF/ME2 (Positive Matrix Factorization using the Multilinear Engine 2) program, and pH were estimated by ISORROPIA-II, to investigate the relationship between pH and nitrate. Five sources (factors) were resolved: secondary sulfate (SS), secondary nitrate (SN), dust, vehicle and coal combustion. SN and pH showed a triangle-shaped relationship. When SS was high, the fraction of nitrate partitioning into the aerosol phase exhibits a characteristic "S-curve" relationship with pH for different seasons. An index ( ITL) is developed and combined with pH to explore the sensitive regions of "S-curve". Controlling the emissions of anions (SO42-, Cl-), cations (Ca2+, Mg2+, etc.) and gases (NO x, NH3, SO2, etc.) will change pH, potentially reducing or increasing SN. The findings of this work provide an effective approach for exploring the formation mechanisms of nitrate under different influencing factors (sources, pH, and IRL).


Assuntos
Poluentes Atmosféricos , China , Monitoramento Ambiental , Gases , Material Particulado
5.
Environ Sci Technol ; 53(15): 8903-8913, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31294542

RESUMO

In this work, we utilize a rich set of simulated and ground-based observational data in Tianjin, China to examine and compare the differences in aerosol acidity and composition predicted by three popular thermodynamic equilibrium models: ISORROPIA II, the Extended Aerosol Inorganics Model vision IV (E-AIM IV), and the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model (AIOMFAC). The species used to estimate aerosol acidity for both simulated and ambient data were NH4+, Na+, SO42-, NO3-, and Cl-. For simulated data, there is good agreement between ISORROPIA II and E-AIM IV predicted acidity in the forward and metastable mode, resulting from the hydrogen ion activity coefficient (γ(H+)) and the molality (m(H+)) showing opposite trends. While almost all other inorganic species concentrations are found to be similar among the three models, such is not the case for the bisulfate ion (HSO4-), which is linked to m(H+). We find that differences in predicted bisulfate between the three models primarily result from differences in the treatment of the HSO4- ↔ H+ + SO42- reaction for highly acidic conditions. This difference in bisulfate is responsible for much of the difference in estimated pH for the ambient data (average pH of 3.5 for ISORROPIA II and 3.0 for E-AIM IV).


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , China , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Termodinâmica
6.
J Environ Sci (China) ; 75: 169-180, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473282

RESUMO

To identify the critical factors impacting the number concentration of particles with the aerodynamic diameters less than 2.5µm (PNC2.5), the continuous measurement of PNC2.5, chemical components in PM2.5, gaseous pollutants and meteorological conditions were conducted at an urban site in Tianjin in June 2015. Results indicated that the average PNC2.5 was 2839±2430 dN/dlogDp 1/cm3 during the campaign. Compared to other meteorological parameters, the relative humidity (RH) had the strongest relationship with PNC2.5, with a Pearson's correlation coefficient of 0.53, and RH larger than 30% influenced strongly PNC2.5. The important influence of secondary reactions on PNC2.5 was inferred due to higher correlation coefficients between PNC2.5 and SO42-, NO3-, NH4+ (r=0.78-0.89; p<0.01) and between PNC2.5 and ratios that represent the conversion of nitrogen and sulfur oxides to particulate matter (r=0.42-0.49; p<0.01). Under specific RH conditions, there were even stronger correlations between PNC2.5 and NO3-, SO42-, NH4+, while those between PNC2.5 and EC, OC were relatively weak, especially when RH exceeded 50%. Principal component analysis (PCA) and Pearson's correlation analysis indicated that secondary sources, vehicle emission and coal combustion might be major contributors to PNC2.5. Backward trajectory and potential source contribution function (PSCF) analysis suggested that the transport of air masses originated from these regions around Tianjin (Liaoning, Hebei, Shandong and Jiangsu) influenced critically PNC2.5. The north of Jiangsu, the west of Shandong, and the east of Hebei were distinguished as major potential source-areas of PNC2.5 by PSCF model.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , China , Cidades , Conceitos Meteorológicos , Estações do Ano
7.
Environ Sci Technol ; 51(8): 4289-4296, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28303714

RESUMO

Acidity (pH) plays a key role in the physical and chemical behavior of PM2.5. However, understanding of how specific PM sources impact aerosol pH is rarely considered. Performing source apportionment of PM2.5 allows a unique link of sources pH of aerosol from the polluted city. Hourly water-soluble (WS) ions of PM2.5 were measured online from December 25th, 2014 to June 19th, 2015 in a northern city in China. Five sources were resolved including secondary nitrate (41%), secondary sulfate (26%), coal combustion (14%), mineral dust (11%), and vehicle exhaust (9%). The influence of source contributions to pH was estimated by ISORROPIA-II. The lowest aerosol pH levels were found at low WS-ion levels and then increased with increasing total ion levels, until high ion levels occur, at which point the aerosol becomes more acidic as both sulfate and nitrate increase. Ammonium levels increased nearly linearly with sulfate and nitrate until approximately 20 µg m-3, supporting that the ammonium in the aerosol was more limited by thermodynamics than source limitations, and aerosol pH responded more to the contributions of sources such as dust than levels of sulfate. Commonly used pH indicator ratios were not indicative of the pH estimated using the thermodynamic model.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Atmosfera , Monitoramento Ambiental , Concentração de Íons de Hidrogênio
8.
Huan Jing Ke Xue ; 45(3): 1328-1336, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471849

RESUMO

The contents of eight carbonaceous subfractions were determined by simultaneously collecting PM2.5 samples from four sites in different functional areas of Tianjin in 2021. The results showed that the organic carbon (OC) concentration was 3.7 µg·m-3 to 4.4 µg·m-3, and the elemental carbon (EC) concentration was 1.6 µg·m-3 to 1.7 µg·m-3, with the highest OC concentration in the central urban area. There was no significant difference in EC concentration. The concentration of PM2.5 showed the distribution characteristics of the surrounding city>central city>peripheral area. The OC/EC minimum ratio method was used to estimate the concentrations of secondary organic carbon (SOC) in PM2.5, and the results showed that the secondary pollution was more prominent in the surrounding city, with SOC accounting for 48.8%. The correlation between carbon subcomponents in each functional area showed the characteristics of the peripheral area>central area>surrounding area, all showing the strongest correlation between EC1 and OC2 and EC1 and OC4. By including the carbon component concentration into the positive definite matrix factorization (PMF) model for source apportionment, the results showed that road dust sources(9.7%-23.5%), coal-combustion sources (10.2%-13.3%), diesel vehicle exhaust (12.6%-20.2%)and gasoline vehicle exhaust (18.9%-38.8%)were the main sources of carbon components in PM2.5 in Tianjin. The pollution sources of carbon components were different in different functional areas, with the central city and peripheral areas mainly affected by gasoline vehicle exhaust; the surrounding city was more prominently affected by the secondary pollution and diesel vehicle exhaust.

9.
Sci Total Environ ; 926: 171583, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38461977

RESUMO

Dual isotopes of nitrogen and oxygen of NO3- are crucial tools for quantifying the formation pathways and precursor NOx sources contributing to atmospheric nitrate. However, further research is needed to reduce the uncertainty associated with NOx proportional contributions. The acquisition of nitrogen isotopic composition from NOx emission sources lacks regulation, and its impact on the accuracy of contribution results remains unexplored. This study identifies key influencing factors of source isotopic composition through statistical methods, based on a detailed summary of δ15N-NOx values from various sources. NOx emission sources are classified considering these factors, and representative means, standard deviations, and 95 % confidence intervals are determined using the bootstrap method. During the sampling period in Tianjin in 2022, the proportional nitrate formation pathways varied between sites. For suburban and coastal sites, the ranking was [Formula: see text] (NO2 + OH radical) > [Formula: see text] (N2O5 + H2O) > [Formula: see text] (NO3 + DMS/HC), while the rural site exhibited similar fractional contributions from all three formation pathways. Fossil fuel NOx sources consistently contributed more than non-fossil NOx sources in each season among three sites. The uncertainties in proportional contributions varied among different sources, with coal combustion and biogenic soil emission showing lower uncertainties, suggesting more stable proportional contributions than other sources. The sensitivity analysis clearly identifies that the isotopic composition of 15N-enriched and 15N-reduced sources significantly influences source contribution results, emphasizing the importance of accurately characterizing the localized and time-efficient nitrogen isotopic composition of NOx emission sources. In conclusion, this research sheds light on the importance of addressing uncertainties in NOx proportional contributions and emphasizes the need for further exploration of nitrogen isotopic composition from NOx emission sources for accurate atmospheric nitrate studies.

10.
Huan Jing Ke Xue ; 44(1): 30-37, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635792

RESUMO

In order to explore the pollution characteristics and health risks of heavy metals in PM2.5 in Tianjin, heavy metal samples (Pb, Cd, Cr, As, Zn, Mn, Co, Ni, Cu, and V) in PM2.5 were analyzed from November 2020 to March 2021 using the Xact-625 heavy metal online analyzer. The spatial and temporal distribution characteristics were analyzed using the HYSPLIT model, and the health risks of heavy metals were analyzed using the US EPA risk assessment model. The results indicated that the average total concentration of the 10 heavy metal elements was (261.56±241.74) ng·m-3, among which the concentrations of Cr ï¼»converted Cr(Ⅵ)ï¼½ and As were higher than the annual average limit of the National Ambient Air Quality Standard (GB 3095-2012). According to the back trajectory results, the medium-distance transmissions from northwest areas (NO.1), the long-distance transmissions from northwest areas (NO.2), the transmissions from southwest areas (NO.3), and the transmissions from northeast areas (NO.4) were the major sources in Tianjin City. The heavy metals of different air masses presented different pollution characteristics and health risks; the concentration of PM2.5, the total concentration of the 10 heavy metal elements, and the total carcinogenic risk of the five heavy metal elements of the NO.3 air mass were the highest, whereas the total non-carcinogenic risk of the 10 heavy metal elements of the NO.2 air mass was higher than that of the other two air mass. The health risk assessment showed that Mn posed non-carcinogenic risks to children, and Cr and As presented carcinogenic risk. Meanwhile, Cd of the NO.3 air masses also presented carcinogenic risk.


Assuntos
Metais Pesados , Material Particulado , Criança , Humanos , Material Particulado/análise , Estações do Ano , Calefação , Cádmio , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , Carcinógenos , China
11.
Huan Jing Ke Xue ; 44(6): 3054-3062, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309924

RESUMO

The emission reduction effect of major air pollution control measures on PM2.5 concentrations was assessed using air quality simulations based on the calculation data of emission reductions from different air pollution control measures and the high spatiotemporal resolution online monitoring data of PM2.5 during the 13th Five-Year Period in Tianjin. The results showed that the total emission reductions of SO2, NOx, VOCs, and PM2.5 from 2015 to 2020 were 4.77×104, 6.20×104, 5.37×104, and 3.53×104 t, respectively. SO2 emission reduction was mainly due to the prevention of process pollution, loose coal combustion, and thermal power. NOx emission reduction was mainly due to the prevention of process pollution, thermal power, and steel industry. VOCs emission reduction was mainly due to prevention of process pollution. PM2.5 emission reduction was mainly due to the prevention of process pollution, loose coal combustion, and the steel industry. The concentrations, pollution days, and heavy pollution days of PM2.5 decreased significantly from 2015 to 2020 by 31.4%, 51.2%, and 60.0% compared to those in 2015, respectively. The concentrations and pollution days of PM2.5 decreased slowly in the later stage (from 2018 to 2020)as compared with those in the early stage (from 2015 to 2017), and the days of heavy pollution remained for approximately 10 days. The results of air quality simulations showed that meteorological conditions contributed one-third to the reduction in PM2.5 concentrations, and the emission reductions of major air pollution control measures contributed two-thirds to the reduction in PM2.5 concentrations. For all air pollution control measures from 2015 to 2020, PM2.5 concentrations were reduced by the prevention of process pollution, loose coal combustion, the steel industry, and thermal power by 2.66, 2.18, 1.70, and 0.51 µg·m-3, respectively, accounting for 18.3%, 15.0%, 11.7%, and 3.5% of PM2.5 concentration reductions. In order to promote the continuous improvement in PM2.5 concentrations during the 14th Five-Year Plan period, under the total coal consumption control and the goal of "peaking carbon dioxide emissions and achieving carbon neutrality," Tianjin should continue to optimize and adjust the coal structure and further promote the coal consumption to the power industry with an advanced pollution control level. At the same time, it is necessary to further improve the emission performance of industrial sources in the whole process, taking environmental capacity as the constraint; design the technical route for industrial optimization, adjustment, transformation, and upgrading; and optimize the allocation of environmental capacity resources. Additionally, the orderly development model for key industries with limited environmental capacity should be proposed, and clean upgrading, transformation, and green development should be guided for enterprises.

12.
Huan Jing Ke Xue ; 44(8): 4211-4219, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694616

RESUMO

The change trend, relationship, and influencing factors of PM2.5 and O3 concentrations were analyzed by using a Kolmogorov-Zurbenko (KZ) filter coupled with stepwise multiple linear regression analysis and the spatiotemporal resolution monitoring data of PM2.5 and O3 and meteorological data observed in Tianjin from 2013 to 2020. The results showed that a significant decreasing trend of PM2.5 concentrations by 50.0% was observed from 2013 to 2020, whereas an increasing trend for O3 concentrations by 25.8% was observed from 2013 to 2020. Compared with that in 2013 to 2017, the monthly difference in PM2.5 concentrations gradually narrowed from 2018 to 2020, whereas the concentration of O3 had increased significantly since April, and the occurrence time of O3 pollution was advanced. The correlation coefficient patterns of O3 and PM2.5 showed obvious seasonal distribution characteristics. The correlation coefficients were negatively correlated in winter and positively correlated in the summer, and the correlation coefficients in summer were generally higher than those in other seasons. The correlation coefficients between O3 and PM2.5 in different seasons were positively proportional to the fitting slope. The ratios of the fitting slope to correlation coefficients showed an increasing trend, which might reflect that the inhibitory effect of PM2.5 on O3 formation in the PM2.5-O3 interaction mechanism might have been weakened due to the impact of emission reduction. A significant decreasing trend was observed for the long-term trend components of the PM2.5 concentration time series; emission reduction played a leading role, and meteorological factors contributed -3 to 6 µg·m-3. The changes in the relationship between the PM2.5/CO ratio versus NO2/SO2 from negative to positive were observed from 2013-2017 to 2018-2020 in Tianjin, which could indicate the enhanced contribution potential of nitrogen oxides to the main secondary component formation of PM2.5 under the current emission reduction scenarios, and the main secondary components of PM2.5in Tianjin gradually changed from sulfate to nitrate. An overall upward trend was observed for the long-term trend components of the O3 concentration time series from 2013 to 2020, and the contribution of precursor emissions to the long-term component of O3 increased from 2013 to 2018 and began to decrease after 2019. The contribution of meteorological factors to the long-term component of O3 presented an obvious stage change, showing a downward trend from 2013 to 2016 and an upward trend from 2016 to 2020. The O3 concentration presented a non-linear relationship with NO2 during the period of intense atmospheric photochemical processes (11:00-16:00) in summer. Compared with that in 2013-2015, the fitting curve of O3 and NO2 showed an obvious offset to the low value of NO2 from 2016 to 2020, which reflected that the NOx emission reduction in this period achieved certain results. Compared with that in 2018, the fitting curve of O3 and NO2 moved downward from 2019 to 2020, which may reflect that NOx and VOCs emission reduction had a non-negligible effect on the O3 decline at this stage.

13.
Huan Jing Ke Xue ; 44(8): 4241-4249, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694619

RESUMO

The spatial distribution, accumulation features, and driving factors of O3 pollution were analyzed using spatial autocorrelation and hotspot analysis and the STIRPAT model based on the high spatiotemporal resolution online monitoring data from 2016 to 2020 in Tianjin. The results showed that the variation characteristics of O3 concentration in Tianjin from 2016 to 2020 had the trend of pollution occurring in advance and the scope of the pollution expanding. The distribution of O3 pollution showed significant aggregation from June to October. High-high value clustering areas included six urban districts, Beichen District, Jinnan District, and Jinghai District. O3 concentration formed high value hot spots in the southwest and low value cold spots in the northeast. Meteorological factors such as temperature, breeze percentage, and sunshine duration, as well as social factors such as NOx emission, VOCs emission, and motor vehicle ownership had significant effects on O3 concentration. The regression fitting effect of the integrated drive STIRPAT model was better than that of the single meteorological factor or social factor models. In order to promote scientific and efficient prevention and control of ozone pollution during the 14th Five-Year Plan period, meteorological conditions require attention; under the goal of "peaking carbon dioxide emissions and achieving carbon neutrality," it is necessary for Tianjin to further improve the emission performance of steel, petrochemicals, thermal power, building materials, and other industries, Additionally, clean upgrading, transformation, and green development should be guided for enterprises to reduce VOCs and NOx emissions. At same time, the increase in fuel vehicle numbers should be controlled, and new energy vehicles should be vigorously promoted to reduce vehicle emissions.

14.
Huan Jing Ke Xue ; 44(5): 2492-2501, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177924

RESUMO

Ambient air pollution is a dominant determinant of health. The health effects and economic losses due to air pollution are very important for decision-making. Since the implementation of the "Air Pollution Prevention and Control Action Plan" and "blue sky defense war" policies, the air quality of Tianjin has changed significantly. Here, the health effects and economic losses attributable to ambient air pollution in Tianjin from 2013 to 2020 wereestimated. For the particulate matter which has complex components, we assessed the inhalation health risks of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in PM2.5. The variation in the concentration of the main components of PM2.5 was also analyzed. The results showed that improved air quality had positive health benefits. The health benefits from SO2 were the highest among the six air pollutants, and 3786 deaths were avoided in 2020 compared to in 2013 due to lower SO2 concentration. The economic losses caused by air pollutants ranged from several billion to ten billion yuan. Among the six air pollutants, particulate matter and ozone had higher health losses in recent years. The health risks of heavy metals and PAHs in PM2.5 showed a decreasing trend. However, Cr(Ⅵ), As, Cd, and Ni in PM2.5in the winter of 2020 still had respiratorysystem carcinogenic risk, whereas there was no health risk of PAHs in PM2.5in 2019-2020. The concentrations of main components of PM2.5 have decreased significantly. In the future, the reduction of health loss caused by air pollution depends on synergy governance of particulate matter and ozone and further research on health effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Metais Pesados , Ozônio , Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental/métodos , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China
15.
J Environ Sci (China) ; 24(1): 112-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22783621

RESUMO

Ambient PM10 (particulate matter with a diameter less than 10 microm) concentrations were measured on a 255 meter tower in Tianjin, China. The samples were collected at four vertical levels (10, 40, 120 and 220 m). Vertical characteristics for PM10 samples were studied. The results showed that the concentrations of PM10 and constituent species had a negative correlation with the sampling height. The highest concentrations of PM10 and species were obtained at the 10 m level, and the lowest concentrations were measured at the 220 m level. For the fractions of species to total mass, SO4(2-) and NO3- had higher values (fraction) at greater height; while Ca had a higher fraction at lower height. Possible source categories for the PM10 ambient dataset were identified by the principal component analysis method. The possible source categories included crustal dust, vehicles, cement dust, and incineration as well as secondary sulfate and nitrate sources. Analysis of meteorological factors on PM10 concentrations indicated that wind speed and inversion may be the main factors contributing to different concentrations of PM10 at different heights.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , China , Poeira/análise , Geografia
16.
Acta Pharm Sin B ; 12(3): 1447-1459, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530148

RESUMO

Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.

17.
Huan Jing Ke Xue ; 43(6): 2928-2936, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686762

RESUMO

The characteristics, pollutant concentration distribution, and key meteorological factors of PM2.5-O3 compound pollution in Tianjin were analyzed based on the high-resolution online monitoring data of PM2.5, O3,and meteorological data observed in Tianjin from 2013 to 2019. Total PM2.5-O3 compound pollution was 94 days and showed a decreasing trend by year; a significant decreasing trend of PM2.5-O3 compound pollution days were observed in the early stage, with a decline rate of 52.2% from 2013 to 2015. By contrast, in the later period from 2016 to 2019, a fluctuating increasing trend of PM2.5-O3 compound pollution days of 16.7% was observed. PM2.5-O3 compound pollution days mainly occurred from March to September each year with substantial variation by year, mainly occurring in June to August from 2013 to 2016 and in April and September from 2017 to 2019. The peak value of ρ(O3) (301-326 µg·m-3) appeared when ρ(PM2.5) ranged from 75 µg·m-3 to 85 µg·m-3. PM2.5-O3 compound pollution days accounted for 34.4% of total O3 pollution events in Tianjin, which showed a decreasing trend by year. The peak O3 concentration and average O3 concentration during PM2.5-O3 compound pollution were higher than those during simplex O3 pollution, and the number of days with PM2.5 and O3 as the primary pollutant decreased and increased in compound pollution days by year, respectively. The weather situation of PM2.5-O3 compound pollution was categorized into five weather types, namely low pressure, weak high pressure, rear of high pressure, front of cold front, and equalized pressure. The low pressure, front of cold front, and weak high pressure were observed most frequently, accounting for 92.5% of the total weather situation. The occurrence of PM2.5-O3 compound pollution was most probable when the dominant wind direction was the southwest and south, the average wind speed was less than 2 m·s-1, the temperature was between 20-35℃, and the humidity was between 40%-60%.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Conceitos Meteorológicos , Material Particulado/análise , Estações do Ano
18.
Acta Biomater ; 147: 258-269, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605954

RESUMO

Chemodynamic therapy (CDT) has aroused extensive attention as a potent therapeutic modality. However, its practical application is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within metastatic breast cancer. Herein, a copper-based single-site nanocatalyst functionalized with carbonic anhydrase inhibitor (CAI) was constructed for magnetic resonance/photoacoustic imaging (MRI/PA)-guided synergetic photothermal therapy (PTT) and CDT. Once reaching tumor sites, the nanocatalyst can be recognized by tumor cell membranes-overexpressed carbonic anhydrase IX (CA IX). Subsequently, the single-site CuII can be reduced to CuI by the tumor-overexpressed glutathione (GSH), which simultaneously impaired the tumor antioxidant defense system and triggered CAI release for inducing intracellular H+ accumulation. Further, the decreased intracellular pH can accelerate the nanocatalyst biodegradation to release more CuII and CAI to participate in next-cycle GSH-depletion and cytoplasm acidification, respectively, thereby continuously supplying CuI and H+ for self-cyclically amplified CDT. Upon laser irradiation, the nanocatalyst can generate local heat, which not only permits PTT but also enhances the nanocatalyst-mediated CDT. Moreover, the suppression of CA IX can hinder the tumor extracellular matrix degradation to prevent tumor metastasis. Overall, this work highlighted the great application prospect in enhancing CDT via tumor acidic/redox microenvironment remodeling, and provides an insightful paradigm for inhibiting breast cancer metastasis. STATEMENT OF SIGNIFICANCE: The practical application of chemodynamic therapy (CDT) is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within cancer. Herein, we developed a carbonic anhydrase inhibitor (CAI)-functionalized Cu-based nanocatalyst. Once reaching tumor sites, the CuII can be reduced to CuI by the tumor-overexpressed glutathione (GSH), which simultaneously impaired the tumor antioxidant system and triggered CAI release for inducing intracellular H+ accumulation. Further, the decreased intracellular pH can accelerate the nanocatalyst biodegradation to release more CuII and CAI to participate in next-cycle GSH-depletion and cytoplasm acidification, respectively, thus continuously supplying CuI and H+ for self-cyclically amplified CDT. Upon laser irradiation, the nanocatalyst not only permits PTT but also enhances the CDT.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias , Antioxidantes , Neoplasias da Mama/tratamento farmacológico , Inibidores da Anidrase Carbônica/uso terapêutico , Linhagem Celular Tumoral , Cobre/farmacologia , Feminino , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Medicina de Precisão , Nanomedicina Teranóstica , Microambiente Tumoral
19.
ACS Appl Mater Interfaces ; 14(26): 29668-29678, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749592

RESUMO

Therapeutic platforms with spatiotemporal control were recently of considerable interest. However, the site-specific regulation of chemotherapeutics release remains an enormous challenge. Herein, a versatile nanoplatform capable of tumor-specific delivery and controlled drug release, coined as PDDFe, was constructed for elevating cancer theranostics. Iron-oxide nanoparticles (IONPs) and doxorubicin (Dox) were encapsulated in pH/thermal-sensitive micelles composed of poly(ethylene)glycol-poly(ß-amino esters) and dipalmitoyl phosphatidylcholine to obtain tumor-targeted dual-responsive nanoplatforms. With remarkable magnetic targeting effects, PDDFe specifically accumulated at tumor locations. After internalization by cancer cells, the acidic environment and localized heat generated by hyperthermia therapy would spur PDDFe to become loose and collapse to liberate its payload. In addition to boosting the release, the increased temperature also resulted in direct tumor damage. Meanwhile, the released Dox and IONPs, respectively, stimulated chemotherapy and chemodynamic therapy to jointly destroy cancer, thus leading to a pronounced therapeutic effect. In vivo magnetic resonance/fluorescence/photoacoustic imaging experiments validated that the dual-sensitive nanoplatforms were able to accumulate at the tumor sites. Treatment with PDDFe followed by alternating magnetic field and laser irradiation could prime hyperthermia/chemo/chemodynamic therapy to effectively retard tumor growth. This work presents a nanoplatform with a site-specific controlled release characteristic, showing great promises in potentiating drug delivery and advancing combinational cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
20.
Huan Jing Ke Xue ; 43(3): 1140-1150, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258178

RESUMO

The characteristics and sources of PM2.5-O3 compound pollution were analyzed based on the high-resolution online monitoring data of PM2.5, O3 and volatile organic compounds(VOCs) observed in Tianjin from 2017 to 2019. The results showed that total PM2.5-O3 compound pollution was 34 days, which only appeared between March and September and slightly increased by year. The peak value of ρ(O3)(301-326 µg·m-3) appeared when ρ(PM2.5) ranged from 75 µg·m-3 to 85 µg·m-3. During PM2.5-O3 compound pollution, the average ρ(VOCs) was 72.59 µg·m-3, and the chemical compositions of VOCs were alkanes, aromatics, alkenes, and alkynes, accounting for 61.51%, 20.38%, 11.54%, and 6.57% of VOCs concentration on average, respectively. The concentration of the top 20 species of VOCs increased, among which the proportion of alkane species such as ethane, n-butane, isobutane, and isopentane increased; the proportion of alkenes and alkynes decreased slightly; and the proportion of benzene and 1,2,3-trimethylbenzene of aromatic hydrocarbons increased slightly. The ozone formation potential(OFP) contribution of alkanes, alkenes, aromatics, and alkynes were 19.68%, 39.99%, 38.08%, and 2.25%, respectively; the contributions of alkanes, alkenes, and aromatics to secondary organic aerosol(SOA) formation potential were 7.94%, 2.17%, and 89.89%, respectively. Compared with that of non-compound pollution, the contribution of alkanes and aromatics to OFP increased 13.8% and 4.3%, and that to SOA formation potential increased 2.3% and 0.2%, respectively. The contribution of alkenes to OFP and SOA formation potential decreased 9.4% and 15.6%, respectively, and the contribution of alkynes to OFP increased 7.7% in compound pollution. The contributions of main species such as 1-pentene, n-butane, methyl cyclopentane, isopentane, 1,2,3-trimethylene, propane, toluene, acetylene, o-xylene, ethylbenzene, m-ethyltoluene, and m/p-xylene to OFP increased, and that of isoprene to OFP decreased. The contribution of benzene, 1,2,3-trimethylbenzene, toluene, and o-xylene to the potential formation of SOA increased during compound pollution. Positive matrix factorization was applied to estimate the contributions of sources to OFP and SOA formation potential in compound pollution, solvent usage, automobile exhaust, petrochemical industrial emission, natural source, liquefied petroleum gas(LPG) evaporation, combustion source, gasoline evaporation, and other industrial process sources were identified as major sources of OFP and SOA formation potential; the contributions of each source to OFP were 21.9%, 16.9%, 16.7%, 12.4%, 8.3%, 7.7%, 2.9%, and 13.2%, respectively, and to SOA formation potentials were 46.8%, 14.4%, 7.1%, 11.9%, 5.9%, 6.6%, 1.6%, and 5.7%, respectively. Solvent usage, automobile exhaust, and petrochemical industrial emissions were main sources for PM2.5-O3 compound pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Material Particulado/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA