Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 21(1): 660, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895217

RESUMO

BACKGROUND: In bladder cancer, up to 70% of patients will relapse after resection within 5 years, in which the mechanism underlying the recurrence remains largely unclear. METHODS: Quantitative real-time PCR, western blot and immunohistochemistry were conducted. The assays of tumor sphere formation and tumor xenograft were further performed to assess the potential biological roles of ATF5 (activating transcription factor 5). Chromatin immunoprecipitation-qPCR and luciferase activity assays were carried out to explore the potential molecular mechanism. A two-tailed paired Student's t-test, χ2 test, Kaplan Meier and Cox regression analyses, and Spearman's rank correlation coefficients were used for statistical analyses. RESULTS: ATF5 is elevated in bladder urothelial cancer (BLCA) tissues, especially in recurrent BLCA, which confers a poor prognosis. Overexpressing ATF5 significantly enhanced, whereas silencing ATF5 inhibited, the capability of tumor sphere formation in bladder cancer cells. Mechanically, ATF5 could directly bind to and stimulate the promoter of DVL1 gene, resulting in activation of Wnt/ß-catenin pathway. CONCLUSIONS: This study provides a novel insight into a portion of the mechanism underlying high recurrence potential of BLCA, presenting ATF5 as a prognostic factor or potential therapeutic target for preventing recurrence in BLCA.

2.
Int J Biol Sci ; 19(15): 4726-4743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781511

RESUMO

Glycine decarboxylase (GLDC) is one of the core enzymes for glycine metabolism, and its biological roles in prostate cancer (PCa) are unclear. First, we found that GLDC plays a central role in glycolysis in 540 TCGA PCa patients. Subsequently, a metabolomic microarray showed that GLDC enhanced aerobic glycolysis in PCa cells, and GLDC and its enzyme activity enhanced glucose uptake, lactate production and lactate dehydrogenase (LDH) activity in PCa cells. Next, we found that GLDC was highly expressed in PCa, was directly regulated by hypoxia-inducible factor (HIF1-α) and regulated downstream LDHA expression. In addition, GLDC and its enzyme activity showed a strong ability to promote the migration and invasion of PCa both in vivo and in vitro. Furthermore, we found that the GLDC-high group had a higher TP53 mutation frequency, lower CD8+ T-cell infiltration, higher immune checkpoint expression, and higher immune exclusion scores than the GLDC-low group. Finally, the GLDC-based prognostic risk model by applying LASSO Cox regression also showed good predictive power for the clinical characteristics and survival in PCa patients. This evidence indicates that GLDC plays crucial roles in glycolytic metabolism, invasion and metastasis, and immune escape in PCa, and it is a potential therapeutic target for prostate cancer.


Assuntos
Glicólise , Neoplasias da Próstata , Masculino , Humanos , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Glicólise/genética , Neoplasias da Próstata/genética
3.
Front Cell Dev Biol ; 10: 882994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874829

RESUMO

The microbiome exerts profound effects on fetal development and health, yet the mechanisms underlying remain elusive. N6-methyladenosine (m6A) plays important roles in developmental regulation. Although it has been shown that the microbiome affects the mRNA m6A modification of the host, it remains unclear whether the maternal microbiome affects m6A epitranscriptome of the fetus so as to impact fetal development. Here, we found that loss of the maternal microbiome altered the expression of m6A writers and erasers, as well as the m6A methylome of the mouse fetal brain and intestine on embryonic day 18. From the m6A profiles, we identified 2,655 and 2,252 m6A modifications regulated by the maternal microbiome in the fetal brain and intestine, respectively, and we demonstrated that these m6A-modified genes were enriched in the neuro/intestinal developmental pathways, such as the Wnt signaling pathway. Finally, we verified that antibiotic treatment mostly recapitulated changes in m6A, and we further showed that the loss of heterozygosity of Mettl3 rescued m6A levels and the expression changes of some developmental genes in the fetal intestine that resulted from antibiotic treatment. Collectively, our data revealed that the maternal microbiome programs the m6A epitranscriptome of the mouse fetal brain and intestine.

4.
Front Genet ; 13: 861853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754822

RESUMO

A growing number of studies have demonstrated that N6 methyladenine (m6A) acts as an important role in the pathogenesis of reproductive diseases. Therefore, it is essential to profile the genome-wide m6A modifications such as in spontaneous abortion. In this study, due to the trace of human villi during early pregnancy, we performed high-throughput sequencing in villous tissues from spontaneous abortion (SA group) and controls with induced abortion (normal group) in the first trimester. Based on meRIP-seq data, 18,568 m6A peaks were identified. These m6A peaks were mainly located in the coding region near the stop codon and were mainly characterized by AUGGAC and UGGACG motif. Compared with normal group, the SA group had 2,159 significantly upregulated m6A peaks and 281 downregulated m6A peaks. Biological function analyses revealed that differential m6A-modified genes were mainly involved in the Hippo and Wnt signaling pathways. Based on the conjoint analysis of meRIP-seq and RNA-seq data, we identified thirty-five genes with differentially methylated m6A peaks and synchronously differential expression. And these genes were mainly involved in the Wnt signaling pathway, phosphatase activity regulation, protein phosphatase inhibitor activity, and transcription inhibitor activity. This study is the first to profile the transcriptome-wide m6A methylome in spontaneous abortion during early pregnancy, which provide novel insights into the pathogenesis and treatment of spontaneous abortion in the first trimester.

5.
Front Oncol ; 12: 929838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059676

RESUMO

Background: ACO1 and IREB2 are two homologous cytosolic regulatory proteins, which sense iron levels and change iron metabolism-linked molecules. These two genes were noticeably decreased in kidney renal clear cell carcinoma (KIRC), which confer poor survival. Meanwhile, there is a paucity of information about the mechanisms and clinical significance of ACO1 and IREB2 downregulation in renal cancers. Methods: The expression profiles of ACO1 and IREB2 were assessed using multiple public data sets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify cohorts for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. The correlations of ACO1 and IREB2 with ferroptosis were further evaluated in The Cancer Genome Atlas (TCGA)-KIRC database. Tumor immune infiltration was analyzed using the CIBERSORT, TIMER, and GEPIA data resources. ACO1 antagonist sodium oxalomalate (OMA) and IREB2 inhibitor sodium nitroprusside (SNP) was used to treat renal cancer ACHN cells together with sorafenib. Results: KIRC patients with low ACO1 or IREB2 contents exhibited a remarkably worse survival rate in contrast with those with high expression in Kaplan-Meier survival analyses. Meanwhile, ACO1 and IREB2 regulate autophagy-linked ferroptosis along with immune cell invasion in the tumor microenvironment in KIRC patients. Blocking the activation of these two genes by their inhibitors OMA and SNP ameliorated sorafenib-triggered cell death, supporting that ACO1 and IREB2 could be participated in its cytotoxic influence on renal cancer cells. Conclusion: ACO1 and IREB2 downregulation in renal cancers were correlated with cancer aggressiveness, cellular iron homeostasis, cytotoxic immune cell infiltration, and patient survival outcomes. Our research is integral to verify the possible significance of ACO1 and IREB2 contents as a powerful signature for targeted treatment or novel immunotherapy in clinical settings.

6.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(1): 6-12, 2019 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-30692060

RESUMO

OBJECTIVE: To investigate the role of MTBP in regulating the migration and invasion of human prostate cancer cells. METHODS: The baseline expressions of MTBP in 3 different human prostate cancer cells lines (22RV1, DU145 and Lncap) were detected using Western blotting. The cells were transfected with a small interfering RNA (siRNA) for MTBP knockdown or MTBP plasmid for MTBP overexpression, and 48 h later, the cells were examined for MTBP expression with Western blotting; the changes in the migration abilities of the cells were evaluated using wound healing assay and Transwell assay, and the cell invasiveness was assessed using Matrigel Transwell assay. The expression of E-cadherin protein, a marker of epithelial mesenchymal transition (EMT), was detected using Western blotting. RESULTS: MTBP expression was the highest in DU145 cells followed by Lncap cells, and was the lowest in 22RV1 cells, indicating a positive correlation of MTBP expression with the level of malignancy of human prostate cancer cells. Transfection of the cells with siRNA or MTBP plasmids efficiently lowered or enhanced the expressions of MTBP in human prostate cancer cells. Wound healing assay showed that inhibition of MTBP expression decreased the migration ability of the prostate cancer cells, and MTBP overexpression significantly promoted the migration of the cells (P < 0.01). Transwell assay showed that MTBP knockdown significantly lowered the migration and invasion ability of the cells, while MTBP overexpression markedly increased the number of migrating and invading cells (P < 0.01); Western blotting results showed that MTBP knockdown increased the expression of E-cadherin protein, and MTBP overexpression decreased E-cadherin expression in the prostate cancer cells. CONCLUSIONS: MTBP overexpression promotes the migration and invasion of human prostate cancer cells possibly relation to the induction of EMT.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , RNA Interferente Pequeno , Transfecção
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(8): 910-916, 2018 Jul 30.
Artigo em Chinês | MEDLINE | ID: mdl-30187884

RESUMO

OBJECTIVE: To investigate the protective effect of bone marrow mesenchymal stem cells (BMSCs)-derived exosomesagainst testicular ischemia-reperfusion injury (IRI) in rats. METHODS: Rat BMSCs were isolated, cultured and identified in theprimary culture. The exosomes were extracted from the BMSCs and characterized using nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Twenty-four healthy male SD rats were randomly divided into shamoperation group, testicular IRI with saline treatment group and IRI with exosome treatment group. The contralateral testes ofthe rats were collected for pathological observation, aseessment of superoxide dismutase (SOD) and malondialdehyde (MDA), and detection of HMGB1, caspases-3 and cleaved caspase-3 expressions using Western blotting. RESULTS: We successfullyobtained exosomes from rat BMSCs. Testicular IRI significantly impaired testicular spermatogenesis, which was markedlyimproved by treatment with the exosomes (P < 0.05). Testicular IRI also caused significant increase in the protein expression ofHMGB1, caspase-3 and cleaved caspase-3 in the testicular tissue, and treatment with the exosomes obviously amelioratedthese changes (P < 0.05). CONCLUSIONS: BMSCs-derived exosomes protects against testicular IRI due to the anti-oxidant, antiinflammatory and anti-apoptosis activities of the exosomes.


Assuntos
Exossomos/transplante , Células-Tronco Mesenquimais/ultraestrutura , Traumatismo por Reperfusão/terapia , Testículo/irrigação sanguínea , Animais , Caspase 3/metabolismo , Proteína HMGB1/metabolismo , Masculino , Malondialdeído/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA