RESUMO
The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT - Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT - Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules - the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics.
RESUMO
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.