Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microvasc Res ; 141: 104314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032534

RESUMO

Novel synthetic prosthesis materials for patch angioplasty are continuously under development and optimization. When a nonwoven-based gelatin membrane is coupled with an electrospun layer of polycaprolactone (PCL), these biohybrid polymer membranes (BHMs) possess higher mechanical properties in aqueous environments. We hypothesized that BHMs can also be used as vascular patches, and we tested our hypothesis in a rat IVC venoplasty and aortic arterioplasty model. Patch venoplasty and arterioplasty were performed in SD rats (200 g), the patches were harvested at day 14, and samples were analyzed by immunohistochemistry and immunofluorescence. The BHM patches were almost degraded, with few parts remaining after 14 days. There was a line of CD34- and nestin-positive cells on the endothelium, with some cells were CD34 and nestin dual-positive, macrophages and leukocytes also participated in the patch healing process. There were PCNA-positive cells in the neointima and peri-patch area, with some cells were also PCNA and α-actin dual-positive. Arterial neointimal endothelial cells were Ephrin-B2- and dll-4-positive, and venous neointimal endothelial cells were Eph-B4- and COUP-TFII-positive. BHM shares a similar healing process like other patch materials, and BHM may have potential applications in vascular surgery.


Assuntos
Gelatina , Veia Cava Inferior , Angioplastia , Animais , Células Endoteliais/metabolismo , Neointima/metabolismo , Nestina , Poliésteres , Antígeno Nuclear de Célula em Proliferação , Ratos , Ratos Sprague-Dawley , Veia Cava Inferior/metabolismo , Veia Cava Inferior/cirurgia
2.
Front Surg ; 9: 905701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211300

RESUMO

Objectives: This study compared results of non-surgical treatment (compression and ultrasound guided thrombin injection (UGTI)) and surgery to treat iatrogenic femoral artery pseudoaneurysms. Methods: PubMed and Embase databases were searched up to October 2021. Primary outcome measure was success rate, and other outcomes examined were complication rate, reintervention rate. Two authors independently reviewed and extracted data. Data were presented as the odds ratios (ORs) with 95% confidence intervals (CIs). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to appraise the quality of the body of evidence. Results: Eight studies were included. A total of 623 patients with pseudoaneurysm undergoing treatment were included, of which 163 subjects underwent surgery, 397 subjects underwent compression, and 63 subjects underwent UGTI. The success rate was significantly lower in the non-surgery group (OR 0.24, 95% CI, 0.08-0.69, I 2 = 0%). The complication rate was significantly lower in the non-surgery group (OR 0.10, 95% CI, 0.03 -0.29, I 2 = 0%). Patients in the non-surgery group tended to have a lower, but statistically insignificant, reintervention rate (OR 0.11, 95% CI, 0.01-1.06, I 2 = 35%). Further, the GRADE assessment showed that these results (success rate, complication rate, and reintervention rate) were of very low quality. Conclusions: Available evidence shows that it is reasonable to regard non-surgical treatment as the primary treatment for iatrogenic femoral artery pseudoaneurysms, and surgery as a remedy after failure of non-surgical treatment in some cases.

3.
J Vasc Access ; 23(3): 403-411, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33619996

RESUMO

BACKGROUND: It is known that the anastomotic angle can influence neointimal hyperplasia and patency in arteriovenous fistulae (AVF). Endothelial nitric oxide synthase (eNOS) is released from the vascular endothelium and can inhibit neointimal hyperplasia. Therefore, here, we aimed to test the hypothesis that the manipulation of eNOS expression could influence neointimal thickness in a rat AVF model with different anastomosis angles. METHODS: Rat carotid artery (inflow, CA) and jugular vein (outflow, JV) AVF were created with acute, blunt, or end-to-end (ETE) anastomosis angles. Aspirin was used to increase eNOS expression in the acute angle group, while N(G)-nitro-L-arginine methyl ester (L-name) was used to decrease eNOS expression in the obtuse angle group. The rats were sacrificed on day 21, and tissues were harvested and analyzed histologically and with immunostaining. RESULTS: A larger anastomosis diameter (p < 0.016) and smaller neointimal area (p < 0.01) were observed in the obtuse and end-to-end (ETE) groups compared to in the acute group. In the acute angle group, there were more proliferating cell nuclear antigen (PCNA) and α-actin dual-positive cells (p < 0.0001) and fewer phospho (p)-eNOS-positive endothelial cells (p < 0.0001) in the neointima than in the obtuse and ETE angle groups. On treating the acute angle and blunt angle groups with aspirin and L-name, respectively, no significant differences in the neointima/lumen rate were observed (p = 0.6526) between the groups; however, there were fewer von Willebrand factor (vWF) and p-eNOS dual-positive cells in the obtuse angle group treated with L-name (p = 0.0045). CONCLUSIONS: We demonstrated that eNOS plays an important role in neointimal hyperplasia in AVF with different anastomosis angles; further, eNOS could potentially be used as a therapeutic target in patients with AVF in the future.


Assuntos
Fístula Arteriovenosa , Neointima , Anastomose Cirúrgica , Animais , Aspirina , Células Endoteliais/patologia , Humanos , Hiperplasia/patologia , NG-Nitroarginina Metil Éster/farmacologia , Neointima/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos
4.
Front Bioeng Biotechnol ; 10: 933505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928960

RESUMO

Background: Patches are commonly used to close blood vessels after vascular surgery. Most currently used materials are either prosthetics or animal-derived; although natural materials, such as a leaf, can be used as a patch, healing of these natural materials is not optimal; rhodamine and rapamycin have been used to show that coating patches with drugs allow drug delivery to inhibit neointimal hyperplasia that may improve patch healing. Wood is abundant, and its stiffness can be reduced with processing; however, whether wood can be used as a vascular patch is not established. We hypothesized that wood can be used as a vascular patch and thus may serve as a novel plant-based biocompatible material. Method: Male Sprague-Dawley rats (aged 6-8 weeks) were used as an inferior vena cava (IVC) patch venoplasty model. After softening, wood patches coated with rhodamine and rapamycin were implanted into the rat subcutaneous tissue, the abdominal cavity, or the IVC. Samples were explanted on day 14 for analysis. Result: Wood patches became soft after processing. Patches showed biocompatibility after implantation into the subcutaneous tissue or the abdominal cavity. After implantation into the IVC, the patches retained mechanical strength. There was a significantly thinner neointima in wood patches coated with rapamycin than control patches (146.7 ± 15.32 µm vs. 524.7 ± 26.81 µm; p = 0.0001). There were CD34 and nestin-positive cells throughout the patch, and neointimal endothelial cells were Eph-B4 and COUP-TFII-positive. There was a significantly smaller number of PCNA and α-actin dual-positive cells in the neointima (p = 0.0003), peri-patch area (p = 0.0198), and adventitia (p = 0.0004) in wood patches coated with rapamycin than control patches. Piezo1 was expressed in the neointima and peri-patch area, and there were decreased CD68 and piezo1 dual-positive cells in wood patches coated with rapamycin compared to control patches. Conclusion: Wood can be used as a novel biomaterial that can be implanted as a vascular patch and also serve as a scaffold for drug delivery. Plant-derived materials may be an alternative to prosthetics or animal-based materials in vascular applications.

5.
Front Bioeng Biotechnol ; 10: 843590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372291

RESUMO

Introduction: The egg shell membrane (ESM) is always considered as waste, but recent studies have shown that it has the potential to yield rapid re-endothelialization in vitro. We hypothesized that ESM and heparin-conjugated ESM (HESM) can be used as arterial patch in a rat aortic angioplasty model. Method: Sprague-Dawley rat (200 g) abdominal aortic patch angioplasty model was used. Decellularized rat thoracic aorta (TA) patch was used as the control; ESM patch was made of raw chicken egg; heparin-coated ESM (HESM) patch was made by using dopamine; anticoagulation properties were verified using platelet adhesion tests; the TA, ESM, and HESM patches were implanted to the rat aorta and harvested at day 14; and the samples were examined by immunohistochemistry and immunofluorescence. Result: The ESM patch showed a similar healing process to the TA patch; the cells could migrate and infiltrate into both patches; there was a neointima with von Willebrand factor-positive endothelial cells; the endothelial cells acquired arterial identity with Ephrin-B2- and dll-4-positive cells; there were proliferating cell nuclear antigen (PCNA)-positive cells, and PCNA and alpha smooth muscle actin dual-positive cells in the neointima in both groups. Heparin was conjugated to the patch successfully and showed a strong anticoagulation property in vitro. HESM could decrease mural thrombus formation after rat aortic patch angioplasty. Conclusion: The ESM is a natural scaffold that can be used as a vascular patch; it showed a similar healing process to decellularized TA patch; HESM showed anticoagulation property both in vitro and in vivo; and the ESM may be a promising vascular graft in the clinic.

6.
Drug Deliv Transl Res ; 12(12): 2950-2959, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35378720

RESUMO

Neointimal hyperplasia is a persistent complication after vascular interventions, and it is also the leading cause of vascular graft restenosis and failure after arterial interventions, so novel treatment methods are needed to treat this complication. We hypothesized that adventitial injection of HA/SA hydrogel loaded with PLGA rapamycin nanoparticle (hydrogel-PLGA-rapamycin) could inhibit neointimal hyperplasia in a rat aortic wire injury model. The HA/SA hydrogel was fabricated by the interaction of hyaluronic acid (HA), sodium alginate (SA), and CaCO3; and loaded with PLGA rapamycin nanoparticle or rhodamine uniformly. A SD rat aortic wire injury induced neointimal hyperplasia model was developed, the control group only received wire injury, the adventitial application group received 10 µL hydrogel-PLGA-rapamycin after wire injury, and the adventitial injection group received 10 µL hydrogel-PLGA-rapamycin injected into the aortic adventitia after wire injury. Tissues were harvested at day 21 and analyzed by histology and immunohistochemical staining. Hydrogel loaded with rhodamine can be successfully injected into the aortic adventitia and was encapsuled by the adventitia. The hydrogel could be seen beneath the adventitia after adventitial injection but was almost degraded at day 21. There was a significantly thinner neointima in the adventitial application group and adventitial injection group compared to the control group (p = 0.0009). There were also significantly fewer CD68+ (macrophages) cells (p = 0.0012), CD3+ (lymphocytes) cells (p = 0.0011), p-mTOR+ cells (p = 0.0019), PCNA+ cells (p = 0.0028) in the adventitial application and adventitial injection groups compared to the control group. The endothelial cells expressed arterial identity markers (Ephrin-B2 and dll-4) in all these three groups. Adventitial injection of hydrogel-PLGA-rapamycin can effectively inhibit neointimal hyperplasia after rat aortic wire injury. This may be a promising drug delivery method and therapeutic choice to inhibit neointimal hyperplasia after vascular interventions.


Assuntos
Nanopartículas , Lesões do Sistema Vascular , Ratos , Animais , Neointima/tratamento farmacológico , Neointima/metabolismo , Neointima/patologia , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Hiperplasia/tratamento farmacológico , Ácido Hialurônico/farmacologia , Sirolimo/metabolismo , Sirolimo/farmacologia , Células Endoteliais , Hidrogéis , Ratos Sprague-Dawley , Rodaminas
7.
Interv Neuroradiol ; : 15910199221123283, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36039496

RESUMO

BACKGROUND: Ischemic stroke and disability caused by carotid artery stenosis have always been worldwide problems. At present, carotid endarterectomy (CEA) and transfemoral carotid artery stenting (TFCAS) have been commonly used to treat carotid artery stenosis. Recently, transcarotid artery revascularization (TCAR) seems to be another option. METHODS: We searched PubMed and Embase to find literatures comparing TCAR with TFCAS and CEA. The primary outcomes were stroke, myocardial infarction (MI), transient ischemic attack (TIA), death, cranial nerve injure (CNI), and operative time. Secondary outcomes were stroke, death, MI in the elderly; cost; radiation; and entry site complication. RESULTS: Initial search of the literature included 165 articles, of which 12 studies were chosen in the end. These studies demonstrated high technical success rate of TCAR. Patients who received TCAR had lower risks of death, stroke/death and less radiation exposure compared to TFCAS. In meta analysis, the risk of stroke was significantly lower in TCAR group than TFCAS (OR 0.63; 95%CI 0.47-0.85). And there was no significant difference in TIA and MI. TCAR was associated with shorter operative time, lower risk of CNI and less blood loss compared to CEA. In older patients, the effect of TCAR was significantly better than that of TFCAS. CONCLUSION: TCAR is associated with a lower risk of perioperative stroke compared to TFCAS. TCAR is also associated with shorter operative time, lower risk of CNI and less blood loss compared to CEA. TCAR may be a promising treatment option besides TFCAS and CEA.

8.
ACS Appl Bio Mater ; 5(4): 1501-1507, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35297594

RESUMO

Background: The inflammatory reaction of sutures and oozing after arterial closure depends on the suture material and the amount of oozing surrounding the sutures. Anti-inflammation coatings have been proven to be an effective strategy to decrease this reaction. The aim of this study was to establish an arterial closure oozing model in rats and to test the effect of poly (lactic-co-glycolic acid) (PLGA) nanoparticle (NP) rapamycin- or necrostatin-1(NEC-1)-coated sutures on the inflammatory reaction after arterial closure. Methods and Materials: A 10 mm arteriotomy was carried out on the carotid artery of Sprague-Dawley rats and closed using 11-0 sutures. PLGA NP-rapamycin and NEC-1 were made. The 11/0 nylon sutures were coated with PLGA NP-rapamycin and NEC-1. Sutures were examined by scanning electron microscopy, hemolysis test, and cumulative release. The carotid arteriotomy was closed using uncoated PLGA NP-rapamycin- and NP-NEC-1-coated sutures. The carotid artery was harvested on day 7. Tissues were examined by histology and immunohistochemistry. Results: There were severe inflammatory reactions in the oozing arteries compared to the normal healing arteries (P = 0.0192). PLGA NP-rapamycin- and NEC -1-coated sutures reduced foreign body reaction compared to the uncoated sutures. There were significantly smaller number of CD3 (P = 0.0068), CD45 (P = 0.0300), and CD68 (P = 0.0011) cells in the PLGA NP-rapamycin- and NP-NEC-1-coated groups compared to the uncoated group. There was a smaller number of p-mTOR (P = 0.0198)-positive cells in the PLGA NP-rapamycin-coated group compared to the uncoated group. There was a smaller number of TNFα (P = 0.0198)-positive cells in the PLGA NP-NEC-1-coated group compared to the uncoated group. Conclusions: In this rat carotid artery oozing model, PLGA NP-rapamycin- or NP-NEC-1-coated sutures can inhibit inflammatory reaction and foreign body reaction. Although this was a small rodent animal experiment, this coated suture may have a potential clinical application in the future.


Assuntos
Nanopartículas , Sirolimo , Animais , Artérias , Reação a Corpo Estranho/prevenção & controle , Imidazóis , Indóis , Inflamação , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Suturas
9.
Front Surg ; 9: 874113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574551

RESUMO

Background: With the development of the Internet, more and more patients search for disease-related information on video platforms during the treatment process, and physicians also look for learning materials through these video platforms. Bilibili is one of the most popular video platforms in China. This study evaluated information on various interesting topics, and related surgical procedures searched through Bilibili. Method: The Bilibili platform was independently queried for 12 common vascular diseases or related surgical procedures between October and November 2021 by two independent authors using the Baidu search engine. Information about the video and uploader was collected, and descriptive analyses of the overall and first-page results were performed. Results: A total of 3,998 search results were retrieved by searching 12 vascular-related topics, of which 2,225 actual videos (55.7%) were finally confirmed to be related to medicine. Videos for the public accounted for 84.8% of these 2,225 videos. In addition, 50.5% of the video results were uploaded by vascular surgeons, 12.4% by other specialties, 17.7% by organizations, and 19.4% by other individuals. The total number of videos searched for varicose vein and peripheral vascular diseases was the largest, and the total number of leg amputation videos was the smallest. The largest number of videos for medical professionals was about pulmonary embolism, and the smallest was about leg amputation. On the first pages, 168 results (70.0%) were actually medically relevant, and only 7.7% of the videos were uploaded by vascular surgeons. Conclusion: On the Bilibili platform, videos about vascular diseases are extensive but not comprehensive. The videos uploaded by vascular surgeons are rare, and the results searched are not precise. The online presence of vascular surgeons needs to be improved, which may partially solve the problem of low-quality videos due to the lack of strict management and censorship.

10.
Front Bioeng Biotechnol ; 9: 742285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778224

RESUMO

Introduction: We recently showed that a decellularized leaf scaffold can be loaded with polylactic-co-glycolic acid (PLGA)-based rapamycin nanoparticles, this leaf patch can then inhibit venous neointimal hyperplasia in a rat inferior vena cava (IVC) venoplasty model. IL-33 plays a role in the neointimal formation after vascular injury. We hypothesized that plant leaves can absorb therapeutic drug solution and can be used as a patch with drug delivery capability, and plant leaves absorbed with IL-33 antibody can decrease venous neointimal hyperplasia in the rat IVC venoplasty model. Method: A human spiral saphenous vein (SVG) graft implanted in the popliteal vein was harvested from a patient with trauma and analyzed by immunofluorescence. Male Sprague-Dawley rats (aged 6-8 weeks) were used to create the IVC patch venoplasty model. Plant leaves absorbed with rhodamine, distilled water (control), rapamycin, IL-33, and IL-33 antibody were cut into patches (3 × 1.5 mm2) and implanted into the rat IVC. Patches were explanted at day 14 for analysis. Result: At day 14, in the patch absorbed with rhodamine group, immunofluorescence showed rhodamine fluorescence in the neointima, inside the patch, and in the adventitia. There was a significantly thinner neointima in the plant patch absorbed with rapamycin (p = 0.0231) compared to the patch absorbed with distilled water. There was a significantly large number of IL-33 (p = 0.006) and IL-1ß (p = 0.012) positive cells in the human SVG neointima compared to the human great saphenous vein. In rats, there was a significantly thinner neointima, a smaller number of IL-33 (p = 0.0006) and IL-1ß (p = 0.0008) positive cells in the IL-33 antibody-absorbed patch group compared to the IL-33-absorbed patch group. Conclusion: We found that the natural absorption capability of plant leaves means they can absorb drug solution efficiently and can also be used as a novel drug delivery system and venous patch. IL-33 plays a role in venous neointimal hyperplasia both in humans and rats; neutralization of IL-33 by IL-33 antibody can be a therapeutic method to decrease venous neointimal hyperplasia.

11.
ACS Omega ; 6(40): 26715-26721, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661025

RESUMO

Introduction: Vascular grafts significantly contribute to advances in vascular surgery, but none of the currently available prosthetic grafts have elastin fibers similar to native arteries. We hypothesized that a novel elastin patch could be produced after a rat decellularized thoracic aorta elastin fiber scaffold is implanted subcutaneously in rats; we tested this novel elastin patch in a rat aortic arterioplasty model. Methods: Sprague-Dawley rats (200 g) were used. Rat thoracic aortae were decellularized and sectioned at a thickness of 30 µm. A single elastin fiber scaffold was fabricated as a net (5 × 5 mm2), and then a three-layer scaffold was constructed to make a new patch. The hyaluronic acid-sodium alginate (HA/SA) hydrogel was fabricated by reacting sodium SA, HA, and CaCO3, and then the hydrogel was added to the patch to secure the elastin fibers. The patches were implanted subcutaneously in rats and harvested at day 14. The elastin patches were then implanted into the same rat's aorta and harvested at day 14; a decellularized rat thoracic aorta (TA) patch was used as a control. Sections of the retrieved patches were stained by immunohistochemistry and immunofluorescence. Results: The elastin fibers could be secured by the hydrogel. After 14 days, the subcutaneously implanted elastin patch was incorporated into the rat tissue, and H&E staining showed that new tissue had formed around the elastin patch with almost no hydrogel left. After implantation into the rat aorta and then retrieval on day 14, H&E staining showed that there was neointima and adventitia formation in both the TA and elastin patch groups. Both patches showed a similar histological structure after implantation, and immunofluorescence showed that there were CD34- and nestin-positive cells in the neointima. In both groups, the endothelial cells expressed the arterial identity markers Ephrin-B2 and dll-4; almost one-third of the cells in the neointima were PCNA-positive with rare cleaved caspase-3-positive cells. Conclusion: We demonstrated a novel approach to making elastin fiber scaffold hydrogel patches (elastin patches) and tested them in a rat aorta arterioplasty model. This patch showed a similar healing process as the decellularized TA patch; it also showed potential applications in large animals and may be a substitute for prosthetic grafts in vascular surgery.

12.
ACS Omega ; 6(17): 11595-11601, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056315

RESUMO

Tissue-engineered plant scaffolds have shown promising applications in in vitro studies. To assess the applicability of natural plant scaffolds as vascular patches, we tested decellularized leaf and onion cellulose in a rat inferior vena cava patch venoplasty model. The leaf was decellularized, and the scaffold was loaded with polylactic-co-glycolic acid (PLGA)-based rapamycin nanoparticles (nanoparticles). Nanoparticle-perfused leaves showed decreased neointimal thickness after implantation on day 14; there were also fewer CD68-positive cells and PCNA-positive cells in the neointima in the nanoparticle-perfused patches than in the control patches. Onion cellulose was decellularized, coated with rapamycin nanoparticles, and implanted in the rat; the nanoparticle-coated onion cellulose patches also showed decreased neointimal thickness. These data show that natural plant-based scaffolds may be used as novel scaffolds for tissue-engineered vascular patches. However, further modifications are needed to enhance patch strength for artery implantations.

13.
Commun Biol ; 4(1): 1153, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611267

RESUMO

Small diameter (< 6 mm) prosthetic vascular grafts continue to show very low long-term patency, but bioengineered vascular grafts show promising results in preclinical experiments. To assess a new scaffold source, we tested the use of decellularized fish swim bladder as a vascular patch and tube in rats. Fresh goldfish (Carassius auratus) swim bladder was decellularized, coated with rapamycin and then formed into patches or tubes for implantation in vivo. The rapamycin-coated patches showed decreased neointimal thickness in both the aorta and inferior vena cava patch angioplasty models. Rapamycin-coated decellularized swim bladder tubes implanted into the aorta showed decreased neointimal thickness compared to uncoated tubes, as well as fewer macrophages. These data show that the fish swim bladder can be used as a scaffold source for tissue-engineering vascular patches or vessels.


Assuntos
Prótese Vascular/veterinária , Carpa Dourada/cirurgia , Bexiga Urinária/cirurgia , Animais , Aorta/cirurgia , Veia Cava Inferior/cirurgia
14.
Biomed Pharmacother ; 137: 111296, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33545663

RESUMO

OBJECTIVES: Aneurysms are generally the result of dilation of all 3 layers of the vessel wall, and pseudoaneurysms are the result of localized extravasation of blood that is contained by surrounding tissue. Since there is still no recommended protocol to decrease aneurysm formation and progression, we hypothesised that intramural delivery of TGF ß1 hydrogel can decrease aneurysm and pseudoaneurysm formation and progression. MATERIALS: Male C57BL/6 J mice (12-14 wk), SD rats (200 g) and pig abdominal aortas were used, and hydrogels were fabricated by the interaction of sodium alginate (SA), hyaluronic acid (HA) and CaCO3. METHODS: A CaCl2 adventitial incubation model in mice and a decellularized human great saphenous vein patch angioplasty model in rats were used. TGF ß1 hydrogel was intramurally delivered after CaCl2 incubation in mice; at day 7, the abdomen in some mice was reopened, and TGF ß1 hydrogel was injected intramurally into the aorta. In rats, TGF ß1 hydrogel was delivered intramurally after patch angioplasty completion. Tissues were harvested at day 14 and analysed by histology and immunohistochemistry staining. The pig aorta was also intramurally injected with hydrogel. RESULTS: In mice, rhodamine hydrogel was still found between the medium and adventitia at day 14. In the mouse aneurysm model, there was a thicker wall and smaller amount of elastin breaks in the TGF ß1 hydrogel-delivered groups both at day 0 and day 7 after CaCl2 incubation, and there were larger numbers of p-smad2- and TAK1-positive cells in the TGF ß1 hydrogel-injected groups. In the rat decellularized human saphenous vein patch pseudoaneurysm model, there was a higher incidence of pseudoaneurysm formation when the patch was decellularized using 3% SDS, and delivery of TGF ß1 hydrogel could effectively decrease the formation of pseudoaneurysm formation and increase p-smad2 and TAK1 expression. In pig aortas, hydrogels can be delivered between the medium and adventitia easily and successfully. CONCLUSIONS: Intramural delivery of TGF ß1 hydrogel can effectively decease aneurysm and pseudoaneurysm formation and progression in both mice and rats, and pig aortas can also be successfully intramurally injected with hydrogel. This technique may be a promising drug delivery method and therapeutic choice to decrease aneurysm and pseudoaneurysm formation and progression in the clinic.


Assuntos
Falso Aneurisma/prevenção & controle , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Portadores de Fármacos , Fator de Crescimento Transformador beta1/administração & dosagem , Falso Aneurisma/metabolismo , Falso Aneurisma/patologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Preparações de Ação Retardada , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Composição de Medicamentos , Hidrogéis , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Sus scrofa
15.
Acta Biomater ; 128: 305-313, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33894348

RESUMO

INTRODUCTION: Incomplete hemostasis after vascular cannulation can cause a hematoma or pseudoaneurysm. We hypothesized that a hydrogel-coated needle would effectively and rapidly stop bleeding after vascular cannulation. METHODS: A hydrogel composed of sodium alginate, hyaluronic acid, and calcium carbonate was coated onto the surface of suture needles. Needles were observed using scanning electronic microscopy (SEM) and immunofluorescence. Cannulation was performed in both mouse and rat models; the liver, kidney, jugular vein, inferior vena cava and aorta were punctured using uncoated and hydrogel-coated needles. Needles coated with a hydrogel with and without CD34 antibody were used to puncture the rat jugular vein and aorta. Tissues were examined by histology and immunofluorescence. RESULTS: The hydrogel was successfully coated onto the surface of 22G and 30G needles and confirmed by SEM. Hydrogel-coated needles rapidly stopped bleeding after cannulation of the liver, kidney, jugular vein, inferior vena cava and aorta. Hydrogel-coated needles that contained CD34 antibody attracted vascular progenitor cells near the puncture site; there were fewer M1-type macrophages and more M2-type macrophages. CONCLUSION: Hydrogel-coated needles can effectively and rapidly stop puncture-site bleeding. The hydrogel that contains CD34 antibody attracted vascular progenitor cells, potentially promoting healing of the site after cannulation. STATEMENT OF SIGNIFICANCE: Incomplete hemostasis after vascular cannulation can cause a hematoma or pseudoaneurysm and remains a significant clinical problem. We developed a hydrogel composed of sodium alginate, hyaluronic acid, and calcium carbonate; hydrogel-coated needles effectively and rapidly stopped bleeding after vascular cannulation. Interestingly, the hydrogel can also serve as a carrier for drugs that are delivered to the puncture site during the short time of cannulation that could additionally promote puncture site healing. Hydrogel-coated needles may be a new method for rapid hemostasis with application to patients especially at risk for bleeding.


Assuntos
Hidrogéis , Agulhas , Animais , Hemorragia/etiologia , Hemorragia/prevenção & controle , Humanos , Veias Jugulares , Camundongos , Punções/efeitos adversos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA