Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Opt Express ; 31(12): 20345-20363, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381431

RESUMO

Low-density parity-check (LDPC) coding is a significant technique for ensuring data reliability in phase-modulated holographic data storage. To accelerate LDPC decoding, we design reference beam-assisted LDPC coding for 4-level phase-modulated holography. The reliability of a reference bit is higher than that of an information bit during decoding because reference data are known during recording and reading processes. By considering the reference data as prior information, the weight of the initial decoding information (i.e., log-likelihood ratio (LLR) information) of the reference bit is increased during LDPC decoding. The performance of the proposed method is evaluated through simulations and experiments. In the simulation, compared with the conventional LDPC code with a phase error rate (PER) of 0.019, the proposed method can reduce bit error rate (BER) by 38.8%, uncorrectable bit error rate (UBER) by 24.9%, decoding iteration time by 29.9%, the number of decoding iterations by 14.8%, and improve decoding success probability by 38.4% approximately. Experimental results demonstrate the superiority of the proposed reference beam-assisted LDPC coding. The developed method can significantly decrease the PER, BER, the number of decoding iterations, and decoding time by using the real captured images.

2.
Opt Express ; 31(21): 34883-34902, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859234

RESUMO

Due to the interference of complex noise in holographic channels and the limitation of phase retrieve algorithms, the reliability of phase-modulated holographic data storage (PHDS) is seriously threatened, especially for multi-level phase modulation. A method for improving data reliability of PHDS is proposed by applying lossless data compression and low-density parity-check (LDPC) codes, which can eliminate data redundancy and correct errors effectively. We allocate the space saved by compression to store more LDPC parity bits and develop a method to determine the LDPC code rate and a method to manage the free space. Our method does not require the characteristics of the reconstructed phase distribution, which simplifies the statistical analysis and calculation. Simulation and experimental results demonstrate that our method greatly decreases the bit error rate (BER) and decoding iterations, and boosts the decoding success probability. For instance, when the phase error rate is 0.029 and the compression rate is 0.6, our method reduces the BER by 87.8%, the decoding iterations by 84.3%, and improves the decoding success probability by 93%. Our method enhances both data reliability and storage efficiency in PHDS.

3.
Opt Express ; 30(24): 43987-44003, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523084

RESUMO

A decision-free downsampling method (DFDS) assisted by channel-transfer information for phase-modulated holographic data storage is proposed. DFDS is used to address the issue of the accumulation of decision errors induced by traditional downsampling. The issue degrades the downsampling accuracy. DFDS comprises two functional segments: acquiring the channel-transfer information offline and performing decision-free downsampling online. With the assistance of the channel-transfer information, DFDS uses Bayesian posterior probabilities instead of traditional decision results to avoid the accumulation of decision errors and achieve more accurate downsampling. The simulation and experimental results show that DFDS reduces the phase error rate, thereby improving the reliability of the holographic data storage system.

4.
Opt Express ; 30(21): 37579-37594, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258344

RESUMO

Phase modulated holographic storage offers superior storage capacity and a longer life span compared with other storage technologies. However, its application is limited by its high raw bit error rate. We aimed to introduce low-density parity-check (LDPC) codes for data protection in phase modulated holographic storage systems. However, traditional LDPC codes can not fully exploit data error characteristics, causing inaccurate initial log-likelihood ratio (LLR) information, which degrades decoding performance, thus limiting the improvement degree of data reliability in phase modulated holographic storage. Therefore, we propose a reliable bit aware LDPC optimization method (RaLDPC) that analyzes and employs phase demodulation characteristics to obtain reliable bits. More accurate initial LLR weights are assigned to these reliable bits. Hence, the optimized initial LLR can reflect the reliability of the demodulated data more accurately. Experimental results show that RaLDPC can reduce the bit error rate by an average of 38.89% compared with the traditional LDPC code, improving the data reliability of phase modulated holographic storage.

5.
Opt Express ; 30(10): 16655-16668, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221503

RESUMO

Owing to their high storage density and long storage life, holographic data storage (HDS) technologies are viable options for mass cold data storage in the era of big data. Phase-modulated holographic data storage (PHDS) is a promising implementation of HDS. However, because of complex noise in the storage channel, many errors remain after phase demodulation. This study investigates the phase decision in the data-reading stage of PHDS. We propose a phase-distribution-aware adaptive (PDAA) decision scheme to address the inaccurate thresholds in traditional phase decision schemes. The PDAA decision scheme can determine more accurate decision thresholds based on the phase distribution characteristics of each reconstructed phase data page and adaptively match different decision thresholds to each phase data page. The experimental results show that when compared to the traditional decision scheme, the PDAA decision scheme can significantly reduce the phase error of data pages, improving the data reliability of holographic storage.

6.
Nanotechnology ; 33(50)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001940

RESUMO

A one-step method for patterning low-resistivity nanoscale copper wire is proposed herein to solve the challenging issues of using common metals rather than noble metal nanostructures fabricated by direct laser writing in solution. A complexing and a reducing agent were introduced for the single-photon absorption of copper solution in the visible range and to enable two-photon absorption with a femtosecond laser. Copper clusters were generated prior to direct laser writing to decrease induced laser energy during two-photon absorption and accelerate copper nanowire patterning to avoid the boiling of copper solution. A surfactant was used to restrain the overgrowth of copper clusters to obtain written nanowires with high uniformity. By controlling the laser writing parameters, the obtained copper wire had a minimum width of 230 nm and a resistivity of 1.22 × 10-5Ω·m. Our method paves the way for the fabrication of common metal nanodevices by direct laser writing.

7.
Appl Opt ; 61(21): 6119-6127, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256223

RESUMO

The iterative Fourier transform (IFT) algorithm is an effective solution for phase retrieval in phase-type holographic data storage systems, but introduces a higher phase error rate. As a result, data reliability becomes a significant issue. In this paper, to improve reliability and decrease decoding latency, we propose a phase distribution aware low-density parity-check (LDPC) code [called point data abstraction library (PDAL)] with outstanding error correcting capability. After experiencing IFT, we first investigate the phase distribution characteristics and find that the adjacent phase distribution is more likely to cross, resulting in higher phase shift percentages. Then, using phase distribution, PDAL optimizes LDPC codes with higher precision decoding information by dynamically applying the phase threshold based on the phase error rate. When the phase error rate is 0.04, the bit error rate, decoding iteration times, and decoding failure rate are all reduced by 51.5%, 26.9%, and 51.8% on average, respectively, compared with traditional LDPC code without exploiting phase distribution. PDAL, which is an efficient and practical error correction approach for phase-modulated holographic data storage, can improve data reliability by boosting error correction performance.

8.
Opt Express ; 29(24): 39304-39311, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809297

RESUMO

Luminescent metal-organic frameworks (LMOFs) are a class of interesting and well-investigated MOF materials, which have shown remarkable prospects in the past and have been widely applied in different fields. However, due to their organic hybrid aspect, micro-/nano-patterning LMOFs in devices via a conventional semiconductor process is very challenging. In this work, we have introduced an elegant technique via nonlinear photon-chemical effect to induce the synthesis and growth of LMOFs. A facile technique for local synthesis and micro-pattering Tb-based luminescent metal organic frameworks (Tb(BTC)·G) from a solution of precursors is achieved. A single step approach micro-patterning for device integration with simultaneous chemical synthesis was proposed. Micro-devices with excellent fluorescence performance based on Tb(BTC)·G have been demonstrated. This work first suggested a high resolution bottom-up micro-patterning technique for MOF device fabrication using femtosecond laser direct writing, showing great potential on MOF based micro/nano-devices integration, especially promising for patterning high resolution luminescent MOF devices.

9.
Opt Express ; 29(24): 40617-40632, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809397

RESUMO

A new type of liquid crystal microlens array (LCMLA) constructed by a single-layered LC material is proposed. The basic dual-mode integrated LC microlens includes a concentric microhole electrode and a central plate electrode. Compared with traditional LC microlenses driven electrically, the dual-mode integrated LC microlens presents a better light control effect, such as being flexibly adjusted between the beam convergence and divergence modes, enlarging both the tunable range of the signal voltage and the focal length and also reducing the focal spot assisted by a convex electric-field generated by the central plate electrode, acquiring a sharper beam diverging microring formed by the concave LC microlens assisted by a concave electric-field generated by the microhole electrode. At the same time, we have also verified that the electric-field filling factor of the dual-mode integrated LCMLA can be obviously increased through jointly tuning the signal voltages applied independently over both the microhole electrode and the central plate electrode. This research has laid a solid foundation for continuously developing LCMLA technology.

10.
Opt Lett ; 46(14): 3388-3391, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264220

RESUMO

As an optical-based classifier of the physical neural network, the independent diffractive deep neural network (D2NN) can be utilized to learn the single-view spatial featured mapping between the input lightfields and the truth labels by preprocessing a large number of training samples. However, it is still not enough to approach or even reach a satisfactory classification accuracy on three-dimensional (3D) targets owing to already losing lots of effective lightfield information on other view fields. This Letter presents a multiple-view D2NNs array (MDA) scheme that provides a significant inference improvement compared with individual D2NN or Res-D2NN by constructing a different complementary mechanism and then merging all base learners of distinct views on an electronic computer. Furthermore, a robust multiple-view D2NNs array (r-MDA) framework is demonstrated to resist the redundant spatial features of invalid lightfields due to severe optical disturbances.

11.
Opt Express ; 28(25): 37686-37699, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379598

RESUMO

To develop an intelligent imaging detector array, a diffractive neural network with strong robustness based on the Weight-Noise-Injection training is proposed. According to layered diffractive transformation under existing several errors, an accurate and fast object classification can be achieved. The fact that the mapping between the input image and the label in Weight-Noise-Injection training mode can be learned, means that the prediction of the optical network being insensitive to disturbances so as to improve its noise resistance remarkably. By comparing the accuracy under different noise conditions, it is verified that the proposed model can exhibit a higher accuracy.

12.
Nanotechnology ; 31(25): 255301, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150739

RESUMO

The fabrication of poly 3,4-ethylene dioxythiophene (PEDOT) devices generally requires a separated strategy for EDOT polymerization and PEDOT coating, thus increasing th difficulty of their integration. With the goal of insolubility of PEDOT in a common solution, material modifications including grafting vinyl moiety groups on the side chain of the PEDOT can increase its solubility, but also markedly reduce the conductivity. Here, we report direct laser writing of pure EDOT monomer into PEDOT with a feature size of 140 nm. The PEDOT nanowire possesses the high conductivity of 1.28 × 105 S m-1 and can be patterned on solid and flexible substrates with various structures, thus paving the way towards organic highly conductive device fabrication and integration.

13.
Sensors (Basel) ; 20(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722494

RESUMO

Plenoptic cameras have received a wide range of research interest because it can record the 4D plenoptic function or radiance including the radiation power and ray direction. One of its important applications is digital refocusing, which can obtain 2D images focused at different depths. To achieve digital refocusing in a wide range, a large depth of field (DOF) is needed, but there are fundamental optical limitations to this. In this paper, we proposed a plenoptic camera with an extended DOF by integrating a main lens, a tunable multi-focus liquid-crystal microlens array (TMF-LCMLA), and a complementary metal oxide semiconductor (CMOS) sensor together. The TMF-LCMLA was fabricated by traditional photolithography and standard microelectronic techniques, and its optical characteristics including interference patterns, focal lengths, and point spread functions (PSFs) were experimentally analyzed. Experiments demonstrated that the proposed plenoptic camera has a wider range of digital refocusing compared to the plenoptic camera based on a conventional liquid-crystal microlens array (LCMLA) with only one corresponding focal length at a certain voltage, which is equivalent to the extension of DOF. In addition, it also has a 2D/3D switchable function, which is not available with conventional plenoptic cameras.

14.
Small ; 15(10): e1804559, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30714294

RESUMO

Flexible pressure sensors as electronic skins have attracted wide attention to their potential applications for healthcare and intelligent robotics. However, the tradeoff between their sensitivity and pressure range restricts their practical applications in various healthcare fields. Herein, a cost-effective flexible pressure sensor with an ultrahigh sensitivity over an ultrawide pressure-range is developed by combining a sandpaper-molded multilevel microstructured polydimethylsiloxane and a reduced oxide graphene film. The unique multilevel microstructure via a two-step sandpaper-molding method leads to an ultrahigh sensitivity (2.5-1051 kPa-1 ) and can detect subtle and large pressure over an ultrawide range (0.01-400 kPa), which covers the overall pressure regime in daily life. Sharp increases in the contact area and additional contact sites caused by the multilevel microstructures jointly contribute to such unprecedented performance, which is confirmed by in situ observation of the gap variations and the contact states of the sensor under different pressures. Examples of the flexible pressure sensors are shown in potential applications involving the detection of various human physiological signals, such as breathing rate, vocal-cord vibration, heart rate, wrist pulse, and foot plantar pressure. Another object manipulation application is also demonstrated, where the material shows its great potential as electronic skin intelligent robotics and prosthetic limbs.


Assuntos
Técnicas Biossensoriais/métodos , Dispositivos Eletrônicos Vestíveis , Grafite , Pressão
15.
Opt Express ; 27(16): 23422-23431, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510618

RESUMO

A new type of electrically controlled liquid-crystal microlens matrix (EC-LCMM) with a nested electrode array for efficiently tuning and swinging focus, which means that the focus position can be adjusted in three dimensions, is proposed. The EC-LCMM is constructed by a 10 × 10 arrayed annular-sector-shaped aluminum electrode with a central microhole of 140µm diameter and three annular-sectors of 210µm external diameter and the period length of 280µm. To the arrangement of the patterned electrode, both the 10 × 10 LC microlens array based on the annular-sector-shaped aluminum electrode and the 9 × 9 LC microlens array based on an arrayed quasi-quadrilateral-ring-shaped electrode can be obtained. The 9 × 9 LC microlens array is formed by matching adjacent four annular-sector-shaped sub-electrodes in the 10 × 10 LC microlenses. The developed EC-LCMM can be used to electrically tune focus along the optical axis and also swing focus over a focal plane selected. The typical performances include: electrically tunable focusing in a driving voltage range of 3~7Vrms, the focal length in a range of 2~0.6mm, and the maximum focus swing distance being 16µm. For effectively describing the focus swing efficiency, the parameters of SF and SA are defined, which are the ratios between the focus swinging distance and the current focal length along the optical axis, and between the focus swinging extent and the external diameter of a single annular-sector-shaped aluminum electrode, respectively. The SF and SA of the EC-LCMM are ~16‰ and ~7.6%, respectively. It can be expected that the complex wavefront can be more efficiently measured and adjusted according to the EC-LCMM-based Shack-Hartmann wavefront measuring and adjusting architecture.

16.
Langmuir ; 35(9): 3248-3255, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759983

RESUMO

The detection of trace amount of volatile organic compounds (VOCs) has been covered by tons of researches, which are dedicated to improve the detection limit and insensitivity to humidity. In this work, we have synthesized ZnO@ZIF-71 nanorod arrays (NRAs) equipped with the adsorption effect at metal site that promoted the detection limit of ethanol and acetone, to which also have great selectivity. The gas sensor not only exhibits shorter response/recovery time (53/55% for ethanol, 48/31% for acetone), but also excellent insensitivity to humidity and improved detection limit (10× improved at 21 ppb for ethanol, 4× at 3 ppb for acetone) at low working temperature (150 °C). By the analysis of in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and calculation of density functional theory (DFT), the mechanism of enhanced gas sensing performance from ZnO@ZIF-71 NRAs is proved. It shows ethanol and acetone gas molecules can be adsorbed at the metal sites of ZIF-71. This work provides a new idea to improve the detection limit and humidity-insensitivity of gas sensor toward specific gas molecules.

17.
Appl Opt ; 58(24): 6611-6617, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31503592

RESUMO

An electrically controlled arc-electrode liquid-crystal microlens array (AE-LCMLA), with tuning and swing focus, is proposed, which can be utilized to replace the traditional mechanically controlled microlenses and also cooperate with photosensitive arrays to solve the problems of measuring and further adjusting a strong distortion wavefront. The top patterned electrode of a single LC microlens is composed of three arc-electrodes distributed symmetrically around a central microhole for constructing the key controlling structures of the LC cavity in the AE-LCMLA. All the arc-electrodes are individually controlled, and then the focal spot of each microlens can be moved freely in a three-dimensional fashion including along the optical axial direction and over the focal plane by simply adjusting the driving signal voltage applied over each arc-electrode, independently. The featured performances of the AE-LCMLA in a wavelength range of ∼501-561 nm are the driving signal voltage being relatively low (less than ∼11 Vrms), the focal length tuning range being from ∼2.54 mm to ∼3.50 mm, the maximum focus swing distance being ∼52.92 µm, and the focus swing ratio K being ∼20‰.

18.
Opt Express ; 26(4): 4035-4049, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475259

RESUMO

Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

19.
Opt Lett ; 43(22): 5551-5554, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439893

RESUMO

In this Letter, all-optical generation of magnetization with arbitrary three-dimensional (3D) orientations is numerically demonstrated through the inverse Faraday effect (IFE) by using a reversing calculation method. The IFE-induced magnetization with an expected 3D orientation is initially conceived by coherently configuring two orthogonally arranged electric dipoles with a phase difference of π/2 in the focal region of a to-be-determined incident light field. Based on the dipole antenna theory, this required incident light field can be deduced analytically according to the orientations of the electric dipoles. By utilizing this field as illumination and reversing the field propagation, magnetization with the expected orientation can be obtained in the focal region through the IFE. Moreover, this method showcases a high magnetization orientation purity (greater than 93%) within the focal volume defined by the full width at half maximum when the numerical aperture of the focal lens is 0.95. This result demonstrates extended flexibility of magnetization manipulations in an all-optical fashion and possesses great potential in spintronics and all-optical magnetic recording.

20.
Langmuir ; 34(48): 14577-14585, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30423250

RESUMO

In this work, we report a metal-organic framework (MOF)-assisted strategy to synthesize necklace-like TiO2/Co3O4 nanofibers with highly ordered heterostructures via a facile approach including electrospinning and subsequent calcination. Polycrystalline TiO2 nanofibers and Co3O4 nanocages are consummately interconnected to form a highly ordered heterogeneous nanostructure, which can be of benefit for precisely accommodating the interface resistance of the p-n heterojunctions and the future realization of improved material performance. The ethanol-gas-sensing investigation showed that TiO2/Co3O4 nanofiber sensors exhibited a strong ethanol response ( Rair/ Rgas -1 = 16.7 @ 150 ppm) and a low operating temperature of 150 °C. The sensing enhancement mechanism of the TiO2/Co3O4 nanofibers is related to the formation of heterojunctions at interfaces and the high catalytic activity of MOF-derived Co3O4. Furthermore, this versatile method is a promising approach to constructing ordered heterostructures and extending the MOF-based heterogeneous materials toward wide applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA