Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
PLoS Med ; 21(5): e1004389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728364

RESUMO

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina , Cetuximab , Neoplasias Colorretais , Fluoruracila , Leucovorina , Neoplasias Hepáticas , Compostos Organoplatínicos , Proteínas Proto-Oncogênicas B-raf , Humanos , Cetuximab/administração & dosagem , Cetuximab/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Feminino , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Leucovorina/uso terapêutico , Leucovorina/administração & dosagem , Fluoruracila/uso terapêutico , Fluoruracila/administração & dosagem , Compostos Organoplatínicos/uso terapêutico , Compostos Organoplatínicos/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Idoso , Adulto , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/administração & dosagem , Resultado do Tratamento , Proteínas ras/genética
2.
Plant J ; 111(1): 117-133, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437852

RESUMO

Serine carboxypeptidase-like acyltransferases (SCPL-ATs) play a vital role in the diversification of plant metabolites. Galloylated flavan-3-ols highly accumulate in tea (Camellia sinensis), grape (Vitis vinifera), and persimmon (Diospyros kaki). To date, the biosynthetic mechanism of these compounds remains unknown. Herein, we report that two SCPL-AT paralogs are involved in galloylation of flavan-3-ols: CsSCPL4, which contains the conserved catalytic triad S-D-H, and CsSCPL5, which has the alternative triad T-D-Y. Integrated data from transgenic plants, recombinant enzymes, and gene mutations showed that CsSCPL4 is a catalytic acyltransferase, while CsSCPL5 is a non-catalytic companion paralog (NCCP). Co-expression of CsSCPL4 and CsSCPL5 is likely responsible for the galloylation. Furthermore, pull-down and co-immunoprecipitation assays showed that CsSCPL4 and CsSCPL5 interact, increasing protein stability and promoting post-translational processing. Moreover, phylogenetic analyses revealed that their homologs co-exist in galloylated flavan-3-ol- or hydrolyzable tannin-rich plant species. Enzymatic assays further revealed the necessity of co-expression of those homologs for acyltransferase activity. Evolution analysis revealed that the mutations of the CsSCPL5 catalytic residues may have taken place about 10 million years ago. These findings show that the co-expression of SCPL-ATs and their NCCPs contributes to the acylation of flavan-3-ols in the plant kingdom.


Assuntos
Diospyros , Vitis , Acilação , Aciltransferases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Flavonoides , Filogenia , Plantas/metabolismo , Polifenóis , Vitis/metabolismo
3.
Plant J ; 110(1): 243-261, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043493

RESUMO

Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.


Assuntos
Camellia sinensis , Processamento Alternativo/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Chá/metabolismo
4.
Planta ; 257(3): 63, 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36807538

RESUMO

MAIN CONCLUSION: Four types of cells were engineered from Artemisia annua to produce approximately 17 anthocyanins, four of which were elucidated structurally. All of them expressed the artemisinin pathway. Artemisia annua is the only medicinal crop to produce artemisinin for the treatment of malignant malaria. Unfortunately, hundreds of thousands of people still lose their life every year due to the lack of sufficient artemisinin. Artemisinin is considered to result from the spontaneous autoxidation of dihydroartemisinic acid in the presence of reactive oxygen species (ROS) in an oxidative condition of glandular trichomes (GTs); however, whether increasing antioxidative compounds can inhibit artemisinin biosynthesis in plant cells is unknown. Anthocyanins are potent antioxidants that can remove ROS in plant cells. To date, no anthocyanins have been structurally elucidated from A. annua. In this study, we had two goals: (1) to engineer anthocyanins in A. annua cells and (2) to understand the artemisinin biosynthesis in anthocyanin-producing cells. Arabidopsis Production of Anthocyanin Pigment 1 was used to engineer four types of transgenic anthocyanin-producing A. annua (TAPA1-4) cells. Three wild-type cell types were developed as controls. TAPA1 cells produced the highest contents of total anthocyanins. LC-MS analysis detected 17 anthocyanin or anthocyanidin compounds. Crystallization, LC/MS/MS, and NMR analyses identified cyanidin, pelargonidin, one cyanin, and one pelargonin. An integrative analysis characterized that four types of TAPA cells expressed the artemisinin pathway and TAPA1 cells produced the highest artemisinin and artemisinic acid. The contents of arteannuin B were similar in seven cell types. These data showed that the engineering of anthocyanins does not eliminate the biosynthesis of artemisinin in cells. These data allow us to propose a new hypothesis that enzymes catalyze the formation of artemisinin from dihydroartemisinic acid in non-GT cells. These findings show a new platform to increase artemisinin production via non-GT cells of A. annua.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/química , Antocianinas/metabolismo , Vias Biossintéticas , Engenharia Metabólica , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Artemisininas/química , Artemisininas/metabolismo
5.
Planta ; 258(4): 75, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668683

RESUMO

MAIN CONCLUSION: Eight promoters were cloned, from which AC and G-box cis-elements were identified. PAP1 enhanced the promoter activity. 2,4-D reduced the anthocyanin biosynthesis via downregulating the expression of the PAP1 transgene. Artemisia annua is an effective antimalarial medicinal crop. We have established anthocyanin-producing red cell cultures from this plant with the overexpression of Production of Anthocyanin Pigment 1 (PAP1) encoding a R2R3MYB transcription factor. To understand the molecular mechanism by which PAP1 activated the entire anthocyanin pathway, we mined the genomic sequences of A. annua and obtained eight promoters of the anthocyanin pathway genes. Sequence analysis identified four types of AC cis-elements from six promoters, the MYB response elements (MRE) bound by PAP1. In addition, six promoters were determined to have at least one G-box cis-element. Eight promoters were cloned for activity analysis. Dual luciferase assays showed that PAP1 significantly enhanced the promoting activity of seven promoters, indicating that PAP1 turned on the biosynthesis of anthocyanins via the activation of these pathway gene expression. To understand how 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin, regulates the PAP1-activated anthocyanin biosynthesis, five different concentrations (0, 0.05, 0.5, 2.5, and 5 µM) were tested to characterize anthocyanin production and profiles. The resulting data showed that the concentrations tested decreased the fresh weight of callus growth, anthocyanin levels, and the production of anthocyanins per Petri dish. HPLC-qTOF-MS/MS-based profiling showed that these concentrations did not alter anthocyanin profiles. Real-time RT-PCR was completed to characterize the expression PAP1 and four representative pathway genes. The results showed that the five concentrations reduced the expression levels of the constitutive PAP1 transgene and three pathway genes significantly and eliminated the expression of the chalcone synthase gene either significantly or slightly. These data indicate that the constitutive PAP1 expression depends on gradients added in the medium. Based on these findings, the regulation of 2,4-D is discussed for anthocyanin engineering in red cells of A. annua.


Assuntos
Artemisia annua , Herbicidas , Antocianinas , Artemisia annua/genética , Espectrometria de Massas em Tandem , Ácido 2,4-Diclorofenoxiacético/farmacologia
6.
Rev Endocr Metab Disord ; 24(2): 327-343, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36715824

RESUMO

Hyperuricemia is a metabolic disease caused by purine nucleotide metabolism disorder. The prevalence of hyperuricemia is increasing worldwide, with a growing trend in the younger populations. Although numerous studies have indicated that hyperuricemia may be an independent risk factor for insulin resistance, the causal relationship between the two is controversial. There are few reviews, however, focusing on the relationship between uric acid (UA) and insulin resistance from experimental studies. In this review, we summarized the experimental models related to soluble UA-induced insulin resistance in pancreas and peripheral tissues, including skeletal muscles, adipose tissue, liver, heart/cardiomyocytes, vascular endothelial cells and macrophages. In addition, we summarized the research advances about the key mechanism of UA-induced insulin resistance. Moreover, we attempt to identify novel targets for the treatment of hyperuricemia-related insulin resistance. Lastly, we hope that the present review will encourage further researches to solve the chicken-and-egg dilemma between UA and insulin resistance, and provide strategies for the pathogenesis and treatment of hyperuricemia related metabolic diseases.


Assuntos
Hiperuricemia , Resistência à Insulina , Humanos , Ácido Úrico/metabolismo , Insulina , Hiperuricemia/metabolismo , Células Endoteliais/metabolismo
7.
Cell ; 133(1): 177-91, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394997

RESUMO

Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Triptofano Transaminase/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/embriologia , Arabidopsis/genética , Vias Biossintéticas , Etilenos/farmacologia , Indóis/metabolismo , Dados de Sequência Molecular , Mutação , Raízes de Plantas/efeitos dos fármacos , Plântula/metabolismo , Alinhamento de Sequência , Triptofano Transaminase/química , Triptofano Transaminase/genética
8.
Plant Mol Biol ; 109(4-5): 579-593, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35553312

RESUMO

KEY MESSAGE: Two 4-coumarate: CoA ligase genes in tea plant involved in phenylpropanoids biosynthesis and response to environmental stresses. Tea plant is rich in flavonoids benefiting human health. Lignin is essential for tea plant growth. Both flavonoids and lignin defend plants from stresses. The biosynthesis of lignin and flavonoids shares a key intermediate, 4-coumaroyl-CoA, which is formed from 4-coumaric acid catalyzed by 4-coumaric acid: CoA ligase (4CL). Herein, we report two 4CL paralogs from tea plant, Cs4CL1 and Cs4CL2, which are a member of class I and II of this gene family, respectively. Cs4CL1 was mainly expressed in roots and stems, while Cs4CL2 was mainly expressed in leaves. The promoter of Cs4CL1 had AC, nine types of light sensitive (LSE), four types of stress-inducible (SIE), and two types of meristem-specific elements (MSE). The promoter of Cs4CL2 also had AC and nine types of LSEs, but only had two types of SIEs and did not have MSEs. In addition, the LSEs varied in the two promoters. Based on the different features of regulatory elements, three stress treatments were tested to understand their expression responses to different conditions. The resulting data indicated that the expression of Cs4CL1 was sensitive to mechanical wounding, while the expression of Cs4CL2 was UV-B-inducible. Enzymatic assays showed that both recombinant Cs4CL1 and Cs4CL2 transformed 4-coumaric acid (CM), ferulic acid (FR), and caffeic acid (CF) to their corresponding CoA ethers. Kinetic analysis indicated that the recombinant Cs4CL1 preferred to catalyze CF, while the recombinant Cs4CL2 favored to catalyze CM. The overexpression of both Cs4CL1 and Cs4CL2 increased the levels of chlorogenic acid and total lignin in transgenic tobacco seedlings. In addition, the overexpression of Cs4CL2 consistently increased the levels of three flavonoid compounds. These findings indicate the differences of Cs4CL1 and Cs4CL2 in the phenylpropanoid metabolism.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Cinética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá
9.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233324

RESUMO

Feeding ramie cultivars (Boehmaria nivea L.) are an important feedstock for livestock. Increasing their biomass and improving their nutritional values are essential for animal feeding. Gibberellin (GA3) and ethylene (ETH) are two plant hormones that regulate the growth, development, and metabolism of plants. Herein, we report effects of the GA3 and ETH application on the growth and plant metabolism of feeding ramie in the field. A combination of GA3 and ETH was designed to spray new plants. The two hormones enhanced the growth of plants to produce more biomass. Meanwhile, the two hormones reduced the contents of lignin in leaves and stems, while increased the content of flavonoids in leaves. To understand the potential mechanisms behind these results, we used RNA-seq-based transcriptomics and UPLC-MS/MS-based metabolomics to characterize gene expression and metabolite profiles associated with the treatment of GA3 and ETH. 1562 and 2364 differentially expressed genes (DEGs) were obtained from leaves and stems (treated versus control), respectively. Meanwhile, 99 and 88 differentially accumulated metabolites (DAMs) were annotated from treated versus control leaves and treated versus control stems, respectively. Data mining revealed that both DEGs and DAMs were associated with multiple plant metabolisms, especially plant secondary metabolism. A specific focus on the plant phenylpropanoid pathway identified candidates of DEGs and DEMs that were associated with lignin and flavonoid biosynthesis. Shikimate hydroxycinnamoyl transferase (HCT) is a key enzyme that is involved in the lignin biosynthesis. The gene encoding B. nivea HCT was downregulated in the treated leaves and stems. In addition, genes encoding 4-coumaryl CoA ligase (4CL) and trans-cinnamate 4-monooxygenase (CYP73A), two lignin pathway enzymes, were downregulated in the treated stems. Meanwhile, the reduction in lignin in the treated leaves led to an increase in cinnamic acid and p-coumaryl CoA, two shared substrates of flavonoids that are enhanced in contents. Taken together, these findings indicated that an appropriate combination of GA3 and ETH is an effective strategy to enhance plant growth via altering gene expression and plant secondary metabolism for biomass-enhanced and value-improved feeding ramie.


Assuntos
Boehmeria , Giberelinas , Boehmeria/metabolismo , Cromatografia Líquida , Coenzima A/metabolismo , Etilenos , Flavonoides , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Hormônios , Ligases/metabolismo , Lignina/metabolismo , Compostos Organofosforados , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Espectrometria de Massas em Tandem , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Transferases/metabolismo
10.
Plant J ; 101(1): 18-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454118

RESUMO

The plant flavonoid dogma proposes that labile plant flavonoid carbocations (PFCs) play vital roles in the biosynthesis of proanthocyanidins (PAs). However, whether PFCs exist in plants and how PFCs function remain unclear. Here, we report the use of an integrative strategy including enzymatic assays, mutant analysis, metabolic engineering, isotope labeling and metabolic profiling to capture PFCs and demonstrate their functions. In anthocyanidin reductase (ANR) assays, an (-)-epicatechin conjugate was captured in protic polar nucleophilic methanol alone or methanol-HCl extracts. Tandem mass spectrum (MS/MS) analysis characterized this compound as an (-)-epicatechin-4-O-methyl (EOM) ether, which resulted from (-)-epicatechin carbocation and the methyl group of methanol. Acid-based catalysis of procyanidin B2 and B3 produced four compounds, which were annotated as two EOM and two (+)-catechin-4-O-methyl (COM) ethers. Metabolic profiling of seven PA pathway mutants showed an absence or reduction of two EOM ether isomers in seeds. Camellia sinensis ANRa (CsANRa), leucoanthocyanidin reductase c (CsLARc), and CsMYB5b (a transcription factor) were independently overexpressed for successful PA engineering in tobacco. The EOM ether was remarkably increased in CsANRa and CsMYB5b transgenic flowers. Further metabolic profiling for eight green tea tissues revealed two EOM and two COM ethers associated with PA biosynthesis. Moreover, an incubation of (-)-epicatechin or (+)-catechin with epicatechin carbocation in CsANRa transgenic flower extracts formed dimeric procyanidin B1 or B2, demonstrating the role of flavan-3-ol carbocation in the formation of PAs. Taken together, these findings indicated that flavan-3-ol carbocations exist in extracts and are involved in the biosynthesis of PAs of plants.


Assuntos
Flavonoides/metabolismo , Proantocianidinas/biossíntese , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Am J Physiol Endocrinol Metab ; 320(6): E1032-E1043, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900847

RESUMO

Uric acid is the end metabolite derived from the oxidation of purine compounds. Overwhelming evidence shows the vital interrelationship between hyperuricemia (HUA) and nonalcoholic fatty liver disease (NAFLD). However, the mechanisms for this association remain unclear. In this study, we established a urate oxidase-knockout (Uox-KO) mouse model by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. To study the correlation between HUA and NAFLD, human HepG2 hepatoma cells were treated in culture medium with high level of uric acid. In vivo, the Uox-KO mice spontaneously developed hyperuricemia and aberrant lipid-metabolism, concomitant with abnormal hepatic fat accumulation. HUA activated c-Jun N-terminal kinase (JNK) in vivo and in vitro. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased fat accumulation and lipogenic gene expression induced by HUA. Overexpression of the lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase 1 was via activation of JNK, which was blocked by the JNK inhibitor SP600125. HUA activated AP-1 to upregulate lipogenic gene expression via JNK activation. In addition, HUA caused mitochondrial dysfunction and reactive oxygen species production. Pretreatment with the antioxidant N-acetyl-l-cysteine could ameliorate HUA-activated JNK and hepatic steatosis. These data suggest that ROS/JNK/AP-1 signaling plays an important role in HUA-mediated fat accumulation in liver.NEW & NOTEWORTHY Hyperuricemia and nonalcoholic fatty liver disease are global public health problems, which are strongly associated with metabolic syndrome. In this study, we demonstrate that uric acid induces hepatic fat accumulation via the ROS/JNK/AP-1 pathway. This study identifies a new mechanism of NAFLD pathogenesis and new potential therapeutic strategies for HUA-induced NAFLD.


Assuntos
Hiperuricemia/metabolismo , Fígado/efeitos dos fármacos , Ácido Úrico/farmacologia , Animais , Células Hep G2 , Humanos , Hiperuricemia/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Ácido Úrico/metabolismo
12.
Biochem Biophys Res Commun ; 540: 22-28, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429196

RESUMO

Mounting evidence has implicated inflammation in ischemia-reperfusion injury following acute ischemic stroke (AIS). Microglia remain the primary initiator and participant of brain inflammation. Emerging evidence has indicated that uric acid has promise for the treatment of AIS, but its explicit mechanisms remain elusive. Here, we observed that uric acid reduced the severity of cerebral infarction and attenuated the activation of microglia in the cerebral cortex in a mouse middle cerebral-artery occlusion/reperfusion model. Thus, we speculated that uric acid may play a role by directly interfering with the inflammatory response of microglia. First, we investigated whether the HMGB1-TLR4-NF-κB signaling plays a role in oxygen glucose deprivation and reperfusion (OGD/R) injury of BV2 cells. Inhibition of the signaling significantly reduced the release of the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 1ß (IL1ß), and IL6 caused by OGD/R in BV2 cells. Second, uric acid weakened the decreased cell viability and lactate dehydrogenase release induced by OGD/R in BV2 cells. Finally, uric acid reduced the release of the proinflammatory cytokines TNF-α, IL1ß, and IL6 caused by OGD/R in BV2 cells by dampening HMGB1-TLR4-NF-κB signaling, which was reversed by probenecid treatment, an inhibitor of the uric acid channel. Hence, uric acid halted the release of inflammatory factors and the decreased cell viability induced by ODG/R via inhibiting the microglia HMGB1-TLR4-NF-κB signaling, thereby alleviating the damage to microglia. This may be part of the molecular mechanisms by which uric acid protects mice against the brain damage of middle cerebral-artery occlusion/reperfusion.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Glucose/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Microglia/efeitos dos fármacos , Ácido Úrico/farmacologia , Ácido Úrico/uso terapêutico , Animais , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Oxigênio/metabolismo , Probenecid/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Ácido Úrico/metabolismo
13.
Microsc Microanal ; 27(4): 758-766, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018478

RESUMO

Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as "gas cooling ability (H)", determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.

14.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670379

RESUMO

A p-type thermoelectric conjugated polymer based on indacenodithiophene and benzothiadiazole is designed and synthesized by replacing normal aliphatic side chains (P1) with conjugated aromatic benzene substituents (P2). The introduced bulky substituent on P2 is detrimental to form the intensified packing of polymers, therefore, it hinders the efficient transporting of the charge carriers, eventually resulting in a lower conductivity compared to that of the polymers bearing aliphatic side chains (P1). These results reveal that the modification of side chains on conjugated polymers is crucial to rationally designed thermoelectric polymers with high performance.


Assuntos
Benzeno/química , Compostos Orgânicos/química , Polímeros/química , Centrais Elétricas
15.
Pak J Med Sci ; 37(4): 1014-1019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290775

RESUMO

OBJECTIVE: This study aims to compare the clinical application value of high-flux dialysis with low-flux dialysis in patients without significantly improved renal function after cervical cancer and obstructive renal failure catheterisation. METHODS: This prospective randomised study was conducted from January 2018 to December 2019. Eighty cervical cancer patients with obstructive renal failure who showed no significant renal function improvement after catheterisation were randomised into two groups (n = 40 in each group) in the Second People's Hospital of Yibin City. High-flux and low-flux dialysis were employed in the experimental group and the control group, respectively. Treatments in both groups were provided every other day, with the whole course lasting one week. Data were recorded before and after dialysis included inflammatory factors such as IL-6, CRP and TNF-a, large and moderate molecular toxins (e.g., ß2 micro-globulin, parathyrin (PTH) and cysteine protease inhibitor). Renal function changes during the dialysis were also recorded. Afterwards, the two groups were compared regarding the overall efficacy. RESULTS: Both the experimental group and the control group experienced a significant decrease in IL-6, CRP, TNF-a, ß2 micro-globulin, PTH and cysteine protease inhibitor, with the decrease in the experimental group being more evident (p < 0.05). After dialysis was completed, the experimental group restored renal function indicators such as Cre, CysC and serum K+ levels more quickly than the control group (p < 0.05). The effective rate was 100% for the experimental group and 87.5% for the control group. The intragroup difference in the efficacy.was significant. CONCLUSIONS: High-flux dialysis appears to be more beneficial for cervical cancer patients with obstructive renal failure, showing no significant improvement in renal function after catheterisation. It restored renal function more quickly, had more radical draining of inflammatory factors and large and moderate molecular toxins, and had a higher overall effective rate.

16.
Biochem Biophys Res Commun ; 527(3): 770-777, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32446561

RESUMO

Nasopharyngeal carcinoma (NPC) is relatively sensitive to ionizing radiation, and radiotherapy is the main treatment modality for non-metastatic NPC. Radiation therapy generates overproduction of reactive oxygen species (ROS), which can cause DNA damage and induce apoptosis in tumors, thereby killing the malignant cells. Although dietary antioxidant supplementation reduces oxidative stress and promotes tumor progression, the effects of antioxidants on the NPC cells upon radiation have not been reported. In the present study, we showed that antioxidants (ß-Carotene, NAC, GSH) played an anti-apoptotic role in response to radiation via decreasing ROS production and inhibiting MAPK pathway in NPC cells. Based on that, we conclude that the use of supplemental antioxidants during radiotherapy should be avoided because of the possibility of tumor protection and reduced treatment efficacy.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Linhagem Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1374-1383, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32281351

RESUMO

The present work is to establish an HPLC characteristic chromatograms of Asarum heterotropoides var. mandshuricum(AH) and A. sieboldii(AS), combined with cluster analysis for the identification of the two species, and predict their potential anti-inflammatory related targets by network pharmacological method. Eighty-nine samples(12 batches of AS and 77 batches of AH) were analyzed, and 11 characteristic peaks were identified by reference substances, UV spectrum and LC-MS. Cluster analysis showed that AS and AH were divided into two groups, and the ratio of characteristic peak areas can be used to distinguish them. When the ratio of characteristic peak sarisan to kakuol was greater than 5, it was AS, and when the ratio was less than 2, it was AH. The network pharmacological analysis of 119 constituents of Asari Radix et Rhizoma suggested that the anti-inflammatory effect of Asari Radix et Rhizoma might be related to COX-2, COX-1, iNOS, MAPK14, NR3 C1, PPARG and TNF. Among them, COX-2 is a relatively key target, which interacted with the characteristic constituents, asarinin, sesamin, safrole, methyleugenol and sarisan. The characteristic constituents asarinin and sesamin also interacted with the iNOS and MAPK14. Safrole and sarisan can also interact with iNOS, COX-1 and LAT4 H. Methyleugenol also showed interaction with COX-1 and LAT4 H. Since asarinin and sesamin interacted with three targets, COX-2, iNOS and MAPK14, it implied that they were the main active constituents for the anti-inflammatory activity of Asari Radix et Rhizoma. The COX-2 inhibitory activities of asarinin and sesamin were further studied by molecular docking and bioassay. The HPLC method established was simple, feasible and reliable, with predicted anti-inflammatory targets and anti-inflammatory constituents, which could provide a reference for improving the quality evaluation system of Asari Radix et Rhizoma.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Asarum/química , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/isolamento & purificação , Rizoma/química
18.
Plant J ; 91(3): 466-479, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28440881

RESUMO

We recently characterized a gene-terpene network that is associated with artemisinin biosynthesis in self-pollinated (SP) Artemisia annua, an effective antimalarial plant. We hypothesize that an alteration of gene expression in the network may improve the production of artemisinin and its precursors. In this study, we cloned an isopentenyl pyrophosphate isomerase (IPPI) cDNA, AaIPPI1, from Artemisia annua (Aa). The full-length cDNA encodes a type-I IPPI containing a plastid transit peptide (PTP) at its amino terminus. After the removal of the PTP, the recombinant truncated AaIPPI1 isomerized isopentenyl pyrophosphate (IPP) to dimethyl allyl pyrophosphate (DMAPP) and vice versa. The steady-state equilibrium ratio of IPP/DMAPP in the enzymatic reactions was approximately 1:7. The truncated AaIPPI1 was overexpressed in the cytosol of the SP A. annua variety. The leaves of transgenic plants produced approximately 4% arteannuin B (g g-1 , dry weight, dw) and 0.17-0.25% artemisinin (g g-1 , dw), the levels of which were significantly higher than those in the leaves of wild-type plants. In addition, transgenic plants showed an increase in artemisinic acid production of more than 1% (g g-1 , dw). In contrast, isoprene formation was significantly reduced in transgenic plants. These results provide evidence that overexpression of AaIPPI1 in the cytosol can lead to metabolic alterations of terpenoid biosynthesis, and show that these transgenic plants have the potential to yield high production levels of arteannuin B as a new precursor source for artemisinin.


Assuntos
Artemisia annua/enzimologia , Artemisia annua/metabolismo , Artemisininas/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Artemisia annua/genética , Isomerases de Ligação Dupla Carbono-Carbono/genética , Hemiterpenos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
19.
Planta ; 247(1): 287-288, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134259

RESUMO

In the original publication, the order of figures and citations was incorrect. The corrections are listed below.

20.
Planta ; 247(2): 443-457, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29075872

RESUMO

MAIN CONCLUSION: CsTPS1 encodes for a monoterpene synthase that contributes to the emission of a blend of volatile compounds emitted from flowers of Camelina sativa. The work describes the in vitro characterization of a monoterpene synthase and its regulatory region that we cloned from Camelina sativa (Camelina). Here, we named this gene as C. sativa terpene synthase 1 (CsTPS1). In vitro experiments performed with the CsTPS1 protein after expression and purification from Escherichia coli (E. coli) showed production of a blend of monoterpene volatile organic compounds, of which the emission was also detected in the floral bouquet of wild-type Camelina plants. Quantitative-PCR measurements revealed a high abundance of CsTPS1 transcripts in flowers and experiments performed with the GUS reporter showed high CsTPS1 expression in the pistil, in the cells of the wall of the ovary and in the stigma. Subcellular localization of the CsTPS1 protein was investigated with a GFP reporter construct that showed expression in plastids. The CsTPS1 gene identified in this study belongs to a mid-size family of 60 genes putatively codifying for TPS enzymes. This enlarged family of TPS genes suggests that Camelina has the structural framework for the production of terpenes and other secondary metabolites of relevance for the consumers.


Assuntos
Alquil e Aril Transferases/metabolismo , Camellia/enzimologia , Monoterpenos/metabolismo , Alquil e Aril Transferases/genética , Camellia/genética , Flores/enzimologia , Flores/genética , Genes Reporter , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Transporte Proteico , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA